
Create your own virtual radio station, with a DJ that reads out the

news and weather and announces your songs before they play

W
e love radio, but don’t you ever wish

you had more control over the playlist?

With Raspberry Radio, every song is

your request. You give it a collection MP3 昀椀les,
and the virtual DJ plays them at random, telling

you something about each track. After a few

songs, it’s time for the news and weather. In this

tutorial, you’ll see how to download the news

headlines using an RSS feed and access your local

weather through an API. Next issue, we’ll get the

DJ talking and cue the music. You can download

the code at magpi.cc/newsreader.

01 Install Python modules
We’ll be using two new Python modules for

this project. It’s quick and easy to install them.

The requests module downloads content from the

web using HTTP requests. The feedparser module

is used to process RSS feeds, which many news

websites use to share headlines, summaries, and

links to their stories. Click the Terminal icon on

Sean
McManus

Author of Mission

Python, Scratch

Programming in

Easy Steps, and

Raspberry Pi For

Dummies (with

Mike Cook). Get

free chapters at

Sean’s website.

sean.co.uk

M
A

K
E

R

Build a
Raspberry Radio

You’ll Need

> Raspberry Pi

> Raspberry Pi OS

> Internet connection

> Display-O-Tron HAT

(optional)

magpi.cc/
displayotron

> Pibow case

(optional)

P
a

r
t
 0

1

your taskbar to open a terminal window. Then

enter the following command at the prompt to

download and install the modules:

pip install requests feedparser

02 Get your API key
An API (application programming interface)

enables applications to talk to each other. In

our case, we want our Python program to talk

to OpenWeather. The service gives you up to a

million requests per month for free, but you need

to register for an API key so they can monitor your

usage. Visit openweathermap.org/price and click

‘Get API key’ in the free tier. You’ll need to register

a username, email address, and password, and

accept the terms. When you sign into your account,

go to your API keys and copy your key.

03 View your weather feed
You’ll use a specially formatted URL to fetch

the weather. There are lots of di昀昀erent weather
forecast options, but we’ll keep it simple by

looking up the current weather. Let’s preview the

data feed before we try to use it from Python. In a

browser window, enter the following URL.

http://api.openweathermap.org/data/2.5/

weather?q=London,uk&units=metric&APPID

=YOUR_API_KEY

Change the city name to your own, and add

your API key after the equals sign at the end. (If

you’re not near a city, consult the documentation

at openweathermap.org/current for tips on using

longitude and latitude instead.)
 This Python Formatter makes it much easier to understand

the JSON structure of the weather data we’re using

TUTORIAL

Build a Raspberry Radio48 magpi.cc

04 Beautify the output
When you view the feed in your

browser, the code isn’t formatted for easy

reading. It’s much easier to understand the

incoming data if we reformat it. Copy the code,

visit magpi.cc/beauti昀椀er, and paste the code in

the box on the left. Click Format, and the box on

the right will show a nicely formatted version

of your code. The code is in JSON format, which

behaves a bit like a Python dictionary. You use

keywords to access the data associated with them.

For example, the keyword ‘temp’ returns a number

(measured in Celsius). The keyword ‘description’

gives me ‘clear sky’ today.

05 Build the weather report
The get_weather() function in

rr_newsreader.py builds a weather report, which

is returned as a string. The function also returns

the temperature as a number, so you can use it

 It’s easiest to understand

the code if you look at the

JSON file

The program downloads the

news and weather. What you

do with it next is up to you!

The Display-O-Tron

has a 3×16 character

display, ideal for

short news headlines

on numeric displays. First, the function uses the

requests module to download your weather report.

Then it uses the built-in JSON processor in the

requests module to extract useful bits of it.

Ultimately, Raspberry Radio will read out the

weather report, so the report starts with a random

phrase to add variety. It’s easiest to understand the

code if you look at the JSON 昀椀le (see Step 4) at the
same time. The data variable stores our full report.

We use data.json().get('weather') to access

the weather attribute of it. The weather section

contains an array with one item in it, which we

access using [0] on line 19. Inside that array, we

can 昀椀nd the description attribute. Similarly, we use

Top Tip

Extend the

weather report

As Step 4 shows,

there’s more

weather data

available. Modify

the program

to report on

humidity, wind

speed, and what

the temperature

feels like.

TUTORIAL

Build a Raspberry Radio 49magpi.cc

the attribute ‘main’ to access a subset of data that

includes the ‘temp’.

06 Use f-strings for formatting
Line 23 uses a Python f-string to format

the weather report. It’s an easy way to insert a

variable’s value into a string. You put an f before

the opening quote of the string, and then put the

variable name in curly braces inside the string.

F-strings are more readable than alternatives,

such as percentage formatting and the format()

function. They both put a placeholder in the string

and the associated variable after the string.

07 Get an RSS link
Many publications publish RSS feeds,

but they’re not as prominent on websites as

they used to be. You can often uncover them by

Google searching for your favourite publication’s

name plus ‘RSS’. The BBC publishes news

feeds (magpi.cc/bbcfeeds) for topics including

technology, health, and entertainment, as well as

news feeds dedicated to the di昀昀erent geographies.
The Guardian (magpi.cc/guardianfeeds) has

feeds for a huge number of topics, as diverse

as Agatha Christie, the Vietnam War, and Pink

Floyd. Raspberry Radio works best if you pick a

newsy topic that is fast-moving. We’re looking for

headlines that make sense in isolation, so avoid

feeds promoting feature articles.

08 Get the news
In rr_newsreader.py, the get_news()

function uses the feedparser module to process the

RSS feed. Paste the web address of your chosen RSS

feed into line 30, or leave the code unchanged for

The Guardian’s news headlines. The function builds

a list called news_list. The 昀椀rst list item introduces
the news, before the loop extracts the titles from

the 昀椀rst three stories in the RSS feed, and adds
them (appends them) to the list. The title contains

the headline, and it’s all we need for our purposes.

Each story also has a description (a summary,

sometimes quite long), and a link to the main

article. To 昀椀nd the URL for the article at index 2, for
example, you’d use rss_feed.entries[2].link.

09 Get the date
Newsreaders start their broadcast with the

date, so the get_date() function creates a human-

readable date. It uses the datetime module, and

its strftime() function, which creates a string

by extracting parts of the date. You use codes to

specify the format you want to use. %A gets you

 You can use
rr_newsreader.py
to show the outside
temperature on a
Rainbow HAT, here
shown through a
di昀昀user layer

News display for Displayotron HAT

From Raspberry Radio project in The MagPi by Sean

McManus

import rr_newsreader

weather_report, temperature = rr_newsreader.get_weather()

print(weather_report)

date_report = rr_newsreader.get_date()

print(date_report)

news_report = rr_newsreader.get_news()

for line in news_report:

 print(line)

news_output.py

001.

002.

003.

004.

005.

006.

007.

008.

009.

010.

011.

> Language: Python

TUTORIAL

Build a Raspberry Radio50 magpi.cc

the day name (e.g. Sunday), %d extracts the day

number, and %B gives you the month in full. We’re

using an f-string again here to build a string that

combines those three date elements. There’s a list

of codes at strftime.org. If you used %I, %M, and %p,

you would get the time in the format ‘10 25 AM’.

10 Prepare to import
You might have noticed that

rr_newsreader.py does not have any output. It

de昀椀nes three functions, but they’re not called at
any time, and the information they gather isn’t

displayed. That’s because we want to make this

code reusable across di昀昀erent projects. This issue,
you’ll see how to display the news headlines on an

LCD screen, but next issue your device will read

them aloud. We can import rr_newsreader.py

into another Python program, as long as both

programs are in the same folder. We used the name

rr_newsreader.py to reduce the risk of confusion

with other newsreader modules.

11 Test the newsreader
The news_output.py listing shows how to

import rr_newsreader.py and access the current

date, weather, and news headlines using it. The

weather and date are returned as strings. The

news is a list, so a loop is used to print each line

in turn. You can use this program as a model for

collecting the data so you can output it using your

favourite HAT.

12 Create your newsreader gadget
The displayotron_news.py listing outputs

the headlines on a Pimoroni Display-O-Tron.

This is just a simple demo: headlines that are

too long are shortened to 昀椀t the display. You
could extend the program so it shows the full

headlines and enables you to page through them

using the buttons on the HAT. The program uses

News display for Displayotron HAT

From Raspberry Radio project in The MagPi by Sean

McManus

import rr_newsreader

import time

import dot3k.backlight as backlight

import dot3k.lcd as lcd

def display_text(text):

 backlight.rgb(200, 200, 255)

 for i in range(min(len(text), 48)):

 substring = text[:i+1]

 lcd.clear()

 lcd.write(substring)

 time.sleep(0.1)

 backlight.rgb(255, 255, 255)

 time.sleep(3)

date_report = rr_newsreader.get_date()

display_text(date_report)

news_report = rr_newsreader.get_news()

for line in news_report:

 display_text(line)

displayotron_news.py

001.

002.

003.

004.

005.

006.

007.

008.

009.

010.

011.

012.

013.

014.

015.

016.

017.

018.

019.

020.

021.

022.

023.

024.

> Language: Python

 We want to make this

code reusable across

different projects

 You can display the
news in the Python
shell, as shown here, or
use rr_newsreader.py
to download it and
show it on your
favourite HAT

Top Tip

Humanise the
news

You could add a

randomly chosen

introduction to the

news to increase

variety, as we have

for the weather.

basic animation, displaying each headline one

character at a time, and brightening the LEDs

when the headline is complete. It makes it feel

like the news is coming in right now, and is more

visually interesting than just having it pop up on

the screen.

TUTORIAL

Build a Raspberry Radio 51magpi.cc

rr_newsreader generates news, weather, and date reports

From Raspberry Radio project in The MagPi by Sean McManus

import feedparser

import requests

import random

from datetime import datetime

def get_weather():

 data = requests.get(

"http://api.openweathermap.org/data/2.5/weather?q=London,uk&units=metric&APPID=YOUR_API_KEY")

 if data.status_code == 200:

report = random.choice(["The weather today is ",

"We're looking at ",

"Today, expect ",

"There's going to be ",

"Out and about today, you'll see "])

weather_forecast = data.json().get('weather')

description = weather_forecast[0].get('description')

report += description

main = data.json().get('main')

temperature = main.get('temp')

report += f". The temperature is {temperature} Celcius."

return report, temperature

 else:

return "There is no weather report today.", False

def get_news():

 news_list = []

 rss_feed = feedparser.parse('https://www.theguardian.com/uk-news/rss')

 news_list.append("Here's the news from The Guardian.")

 for i in range(3):

news_list.append(rss_feed.entries[i].title)

 return news_list

def get_date():

 date = datetime.today()

 date_text = f"It's {date.strftime('%A')} {date.strftime('%d')} {date.strftime('%B')}."

 return date_text

rr_newsreader.py

001.

002.

003.

004.

005.

006.

007.

008.

009.

010.

011.

012.

013.

014.

015.

016.

017.

018.

019.

020.

021.

022.

023.

024.

025.

026.

027.

028.

029.

030.

031.

032.

033.

034.

035.

036.

037.

038.

039.

> Language: Python magpi.cc/newsreader

DOWNLOAD
THE FULL CODE:

TUTORIAL

Build a Raspberry Radio52 magpi.cc

On air in 3, 2, 1… You’re listening to Raspberry Radio, the only

station that plays your own music, all day and all night

W
ith Raspberry Radio, you’re guaranteed

to hear your favourite songs. The

program creates a virtual DJ, who

plays your MP3s at random, but introduces

each one with some information about it. Every

eight songs, there’s a break for the news and

weather. For an extra touch, you can add a

Display-O-Tron HAT to show the artist and track

name while it plays, like a DAB radio does. This

project shows you how to make your Raspberry

Pi speak, how to access the metadata in an

MP3 file, and how to play music from Python.

01 Prepare your files
Raspberry Radio makes use of the

rr_newsreader.py program from Part 1 in this

series (see The MagPi issue #121, magpi.cc/121).

Put rr_newsreader.py in the same folder as the

raspberry_radio.py program from this issue.

That folder should also have two subfolders:

one called music, and another called jingles.

You can download all the code for this project

at magpi.cc/raspradio.

02 Install Python modules
For text-to-speech, we’re using pyttsx3.

Playsound will play our MP3s. Meanwhile, tinytag

will read the metadata of the music files. By pulling
out the artist name, song title, album, and year,

we can get the virtual DJ to say something smart

about each track before it plays. You also need to

install the modules that the rr_newsreader.py

program requires, if you didn’t do that last issue.

Open a Terminal window and enter the following

commands at the prompt to download and install

the modules, along with text-to-speech and media

player software:

Sean
McManus

Author of Mission

Python, Scratch

Programming in

Easy Steps, and

Raspberry Pi For

Dummies (with Mike

Cook). Get free

chapters at

Sean’s website.

sean.co.uk

M
A

K
E

R

Raspberry Pi Radio:
Add a DJ and jingles

You’ll Need

> Some MP3 music
files

> Some MP3 jingles

> Internet connection

> Display-O-Tron HAT
(optional) magpi.cc/

displayotron

> PiGlow (optional)
magpi.cc/piglow

 Using Pygame (instead of Playsound) and a PiGlow (instead
of the Display-O-Tron), you can flash the lights while music
plays. See the code at magpi.cc/discolights

P
a

rt
 0

2

pip install pyttsx3 tinytag playsound

requests feedparser

sudo apt install espeak mopidy

03 Gather music and jingles
Raspberry Radio uses your own MP3s,

which you should copy to the music subfolder.

If you don’t have an MP3 collection, lots of

artists make their music available for free

download on Bandcamp (find the author’s at
magpi.cc/artificial). To make it feel like real radio,

we will top up the jingles folder. We recommend

Music Radio Creative (magpi.cc/freejingles), which

has lots of themed collections for free download.

It’s OK if your music and jingles folders have

subfolders. Find a news jingle and store it beside

the raspberry_radio.py program, not in the jingles

folder. Call it news_jingle.mp3. We’ll play it when

the news is read out.

TUTORIAL

52 magpi.cc Raspberry Pi Radio: Add a DJ and jingles

The voice.say() function queues up speech, but it

isn’t spoken until the voice.runAndWait() function

runs. You can optionally set the rate (or speed) of

the speech. In line 62, we chose 170. It’s a bit slower

than natural speech, so it’s easier to understand.

Lower numbers are slower still, and higher numbers

are faster. We packaged up the speech instructions

in the output() function at the start of the program.

It also prints the messages to the screen.

06 Choose your DJ
There are several English accents you can

choose from, including en-scottish, english-north,

english_rp, english_wmids, english-us, en-

westindies. As you can see, some use hyphens and

some use underscores in their names. RP is short

for received pronunciation and is the accent you

hear on old BBC news reels. You can change your

DJ’s voice by adding an instruction like this:

You can connect to any

speakers, such as these

portable iPod speakers

The screen shows the artist

and song title, like a DAB radio

Top Tip

Be selective

Indexing the

files takes some
time, so choose
your favourite
tracks and
albums, rather
than pointing
the program
at your entire
iTunes library.

 You can edit out silence or

cut an excessive fade

04 Edit the jingles
Radio and podcast jingles often have a slow

fade out on them, because the (human) DJ speaks

over the end of them. You can edit out silence or

cut an excessive fade using Audacity. Install it from

the Terminal using sudo apt install audacity.

You’ll find it in the Sound & Video category of
your desktop menu. Open a jingle, and click the

Play button in the top left to see where the fade

becomes inaudible. Click and drag from that point

to the end of the sound, and then use CTRL+X to

cut the selected audio. Select File > Export to save
your trimmed MP3 file.

05 Make Raspberry Pi speak
The instructions that make the computer

talk are spread out in the program, so here’s a

simple demo that brings them all together. Enter

these instructions in the Python Shell:

import pyttsx3

voice = pyttsx3.init()

voice.say("hello")

voice.runAndWait()

TUTORIAL

53magpi.ccRaspberry Pi Radio: Add a DJ and jingles

voice.setProperty('voice', 'english_wmids')

If you want to change the voice, we suggest you add

the instruction near the end of the program, after

you set its speed. You can change the voice back by

setting it to 'default'.

07 Playing MP3s
There are several different ways you can

play music tracks from Python on Raspberry Pi.

We’re using the playsound module because it’s

easy to use, and the code is concise. You can play

an MP3 using just two lines of code:

from playsound import playsound

playsound('filename.mp3')

By default, playsound pauses the program until the

sound has finished. That stops our DJ’s speech and
the audio files clashing. You can pass an additional
value of False to start the sound playing without

pausing the program.

08 Indexing the music files
The index_directory() function creates

a list containing all the music files in a directory
and its subfolders. It might look familiar: we used

a similar function to index images for ArtEvolver

in issue 119. This time, we pass an additional True

or False value to the function to say whether we

want to perform quality checks. The quality checks

ensure that songs are added that will work well on

the radio. First, it checks they have a song title.

Then, it excludes tracks that are in the Christmas

or Books & Spoken genres, songs longer than 6000
seconds, and songs with ‘live’ in the album or track

name. It’s distracting when bursts of applause

break through, although we do sacrifice some
songs along the way (such as

Raspberry Radio from The MagPi by Sean McManus
import rr_newsreader, random, pyttsx3, os, sys
from playsound import playsound
from tinytag import TinyTag
import dot3k.lcd as lcd # Remove if not using Display-O-Tron

def output(text):
 print(text)
 voice.say(text)
 voice.runAndWait()

def broadcast_news_and_weather():
 playsound('news_jingle.mp3')
 date = rr_newsreader.get_date()
 output(date)
 news_headlines = rr_newsreader.get_news()
 for line in news_headlines:
 output(line)
 weather_report, temperature = rr_newsreader.get_weather()
 output(weather_report)

def index_directory(path, songs, perform_checks):
 print("Processing directory:", path)
 for entry in os.listdir(path):
 path_plus_entry = os.path.join(path, entry)
 if os.path.isdir(path_plus_entry):
 index_directory(path_plus_entry, songs,
perform_checks)
 elif entry.endswith('.mp3'):
 tag = TinyTag.get(path_plus_entry)
 if perform_checks == False or \
 (tag.title is not None and \
 tag.genre not in ["Books & Spoken",
"Christmas"] and \
 tag.duration < 6000 and \
 "live" not in tag.album and \
 "live" not in tag.title):
 songs.append(path_plus_entry)
 print("Track added:", tag.title, "by",
tag.artist, "from", tag.album)
 return songs

def play_songs(number_of_songs):
 for _ in range(number_of_songs):
 if random.random() > 0.4:
 jingle_to_play = random.choice(jingles)
 playsound(jingle_to_play)
 song_to_play = random.choice(songs)
 tag = TinyTag.get(song_to_play)
 dj_says = random.choice(
 [f"What were you doing in {tag.year}?
 Here's what {tag.artist} was up to.",
 f"Here's a {tag.year} track from the album
{tag.album}.",
 f"Fancy some {tag.genre} music? Here's {
tag.artist}."
])
 output(dj_says)
 DAB_display = (tag.artist + ' ' * 16)[:16] \
 + tag.title[:32]
 lcd.clear()
 lcd.write(DAB_display)

raspberry_radio.py

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.

028.
029.
030.
031.
032.

033.
034.
035.
036.
037.

038.
039.
040.
041.
042.
043.
044.
045.
046.
047.
048.

049.

050.

051.
052.
053.
054.
055.
056.

> Language: Python 3

 playsound(song_to_play)

songs = index_directory("music", [], True) #
folder for music
jingles = index_directory("jingles", [], False)
folder for jingles
voice = pyttsx3.init()
voice.setProperty('rate', 170)
while True:
 broadcast_news_and_weather()
 play_songs(8)

057.
058.
059.

060.

061.
062.
063.
064.
065.

magpi.cc/raspradio

DOWNLOAD
THE FULL CODE:

TUTORIAL

54 magpi.cc Raspberry Pi Radio: Add a DJ and jingles

Top Tip

Speed up
indexing

You can speed
up the indexing
by deleting or
commenting
out the print

statements
in the index_

directory()

function.

 Music Radio Creative provides lots of free jingle packs,
made with professional voiceover artists and high-
energy sound effects

Live to Tell by Madonna). When indexing the music

folder, we want to make sure the songs follow

those rules. The jingles don’t need metadata

(and probably don’t have it), so we turn off the
quality checks for them.

09 Extracting the music metadata
The tinytag module is used to extract

metadata from the MP3 file in line 46. We can
discover the song title, artist, album, year, genre,

and duration. We’ve assumed that if the song title

is present, then other metadata will be too. You can

also find the composer, which is well-supported
for classical music, but less so for pop and rock.

The more accurate and the more complete your

metadata is, the more authentic the DJ will sound.

10 Creating the DJ banter
The dj_says variable contains a randomly

chosen phrase for the DJ to say before the song

plays. We use f-strings to insert one or more tags

into the phrase. Only a few examples are included

here. The more you add, the less repetitive your

DJ will sound. Have fun with it: it’s easy to make

 This twelve-second
jingle only has
between six and
seven seconds
of audible sound.
Using Audacity, you
can trim it

robotic announcements like “This is Prince. Here’s

Purple Rain.” It sounds more like a real DJ to say

something like “What were you doing in 1984?
Here’s what Prince was up to!”

11 Making the DAB display
The best feature of our DAB radio is that it

shows us the track and artist that’s playing, so if

you miss the DJ’s introduction, we can still find out
what it is. We’ve used a Display-O-Tron HAT to

show the artist name and song name. If you don’t

have one, you can delete lines 5, and 53 to 56. The

display is 16 characters wide and has three rows.

The code takes the artist name, adds 16 spaces, and

then keeps only the first 16 characters using [:16].

That ensures the artist name fills the first line and
doesn’t spill over. The song name is cut to its first
32 characters so it doesn’t wrap from the bottom

line to the top.

12 Build on it!
There’s lots you can do to extend this

project. You could remove songs from the list when

they’re played, so they don’t get played twice. If

you use Pygame to play the music instead of the

playsound module, you can display animations

while the music plays. The downside is that

Pygame doesn’t support MP3 files, so you’ll need to
convert your files to the OGG format. You can find
some example code to cycle through the lights on a

PiGlow add-on board at magpi.cc/discolights

 There’s lots you can do to

extend this project

TUTORIAL

56 magpi.cc Raspberry Pi Radio: Add a DJ and jingles

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

