Raspberry Pi for Dummies

Connect the Raspberry Pi and install the OS
Learn Programming with Scratch® and Python®
Create electronics projects connected to the GPIO port

Sean McManus
Mike Cook
Contents at a Glance

Introduction ... 1

Part 1: Setting Up Your Raspberry Pi 7
CHAPTER 1: Introducing the Raspberry Pi 9
CHAPTER 2: Downloading the Operating System 23
CHAPTER 3: Connecting Your Raspberry Pi 35

Part 2: Getting Started with Linux 57
CHAPTER 4: Using the Desktop Environment 59
CHAPTER 5: Using the Linux Shell 87

Part 3: Using the Raspberry Pi for Both Work and Play 125
CHAPTER 6: Being Productive with the Raspberry Pi 127
CHAPTER 7: Editing Photos on the Raspberry Pi with GIMP ... 139
CHAPTER 8: Playing Audio and Video on the Raspberry Pi ... 149

Part 4: Programming the Raspberry Pi 161
CHAPTER 9: Introducing Programming with Scratch 163
CHAPTER 10: Programming an Arcade Game Using Scratch 183
CHAPTER 11: Writing Programs in Python 207
CHAPTER 12: Creating a Game with Python and Pygame Zero ... 239
CHAPTER 13: Programming Minecraft with Python 257
CHAPTER 14: Making Music with Sonic Pi 281

Part 5: Exploring Electronics with the Raspberry Pi 297
CHAPTER 15: Understanding Circuits 299
CHAPTER 16: Taking Control of Your Pi's Circuitry 321
CHAPTER 17: Lots of Multicolored LEDs 357
CHAPTER 18: Old McDonald's Farm and Other RFID Adventures 389

Part 6: The Part of Tens .. 425
CHAPTER 19: Ten Great Software Packages for the Raspberry Pi 427
CHAPTER 20: Ten Inspiring Projects for the Raspberry Pi 437

Appendix A: Troubleshooting and Configuring the Raspberry Pi . 445

Index ... 459
Table of Contents

INTRODUCTION ... 1
 About This Book ... 1
 Why You Need This Book ... 2
 Foolish Assumptions .. 3
 Icons Used in This Book .. 3
 Beyond the Book .. 4
 Where to Go from Here .. 4

PART 1: SETTING UP YOUR RASPBERRY PI 7

CHAPTER 1: Introducing the Raspberry Pi 9
 Getting Familiar with the Raspberry Pi 11
 Figuring Out What You Can Do with a Raspberry Pi 14
 Getting Your Hands on a Raspberry Pi 15
 Determining What Else You Need 16

CHAPTER 2: Downloading the Operating System 23
 Introducing Linux ... 24
 Creating a NOOBS Card .. 25
 Downloading NOOBS .. 25
 Formatting the SD card .. 26
 Copying NOOBS to the SD or MicroSD card 30
 Using Your NOOBS Card ... 32
 Flashing an SD or MicroSD card 32

CHAPTER 3: Connecting Your Raspberry Pi 35
 Inserting the SD Card .. 37
 Connecting the Raspberry Pi Camera Module 39
 Connecting the camera on a Pi Zero W 40
 Connecting the camera on other Raspberry Pi models 40
 Preparing Your Pi Zero or Zero W 41
 Connecting a Monitor or TV .. 41
 Connecting an HDMI or DVI display 42
 Connecting a television using composite video 42
 Connecting a USB Hub ... 43
 Connecting a Keyboard and Mouse 44
 Connecting Audio .. 44
 Connecting to Your Router ... 45
 Connecting the Power and Turning on the Raspberry Pi 46
PART 2: GETTING STARTED WITH LINUX

CHAPTER 4: Using the Desktop Environment

Navigating the Desktop Environment
- Using the Applications menu
- Running programs that are not on the menu
- Resizing and closing program windows
- Using the Task Manager
- Using File Manager
- Navigating File Manager
- Copying and moving files and folders
- Selecting multiple files and folders
- Creating new folders and blank files
- Deleting files and folders
- Changing how files are displayed
- Opening a folder in the terminal
- Browsing the Web
 - Using Chromium to browse the web
 - Searching within web pages
 - Using tabbed browsing
 - Adding and using bookmarks
 - Protecting your privacy
- Sending and Receiving Email with Claws Mail
- Using the Image Viewer
- Using the Text Editor
- Customizing the Desktop
- Finding and Installing New Applications
- Backing Up Your Data
- Logging Out from PIXEL and Shutting Down

CHAPTER 5: Using the Linux Shell

Understanding the Prompt
- Exploring Your Linux System
 - Listing files and directories
 - Changing directories
 - Checking file types
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changing to the parent directory</td>
<td>90</td>
</tr>
<tr>
<td>Understanding the directory tree</td>
<td>91</td>
</tr>
<tr>
<td>Using relative and absolute paths</td>
<td>94</td>
</tr>
<tr>
<td>Investigating more advanced listing options</td>
<td>96</td>
</tr>
<tr>
<td>Understanding the Long Listing Format and Permissions</td>
<td>99</td>
</tr>
<tr>
<td>Slowing Down the Listing and Reading Files with the Less Command</td>
<td>102</td>
</tr>
<tr>
<td>Speeding Up Entering Commands</td>
<td>103</td>
</tr>
<tr>
<td>Using Redirection to Create Files</td>
<td>104</td>
</tr>
<tr>
<td>Creating Directories</td>
<td>106</td>
</tr>
<tr>
<td>Deleting Files</td>
<td>107</td>
</tr>
<tr>
<td>Using Wildcards to Select Multiple Files</td>
<td>108</td>
</tr>
<tr>
<td>Removing Directories</td>
<td>110</td>
</tr>
<tr>
<td>Copying and Renaming Files</td>
<td>111</td>
</tr>
<tr>
<td>Installing and Managing Software on Your Raspberry Pi</td>
<td>113</td>
</tr>
<tr>
<td>Updating the cache</td>
<td>114</td>
</tr>
<tr>
<td>Finding the package name</td>
<td>114</td>
</tr>
<tr>
<td>Installing software</td>
<td>115</td>
</tr>
<tr>
<td>Running software</td>
<td>116</td>
</tr>
<tr>
<td>Upgrading the software</td>
<td>116</td>
</tr>
<tr>
<td>Removing software and freeing up space</td>
<td>117</td>
</tr>
<tr>
<td>Finding out what's installed</td>
<td>118</td>
</tr>
<tr>
<td>Managing User Accounts on Your Raspberry Pi</td>
<td>118</td>
</tr>
<tr>
<td>Learning More about Linux Commands</td>
<td>120</td>
</tr>
<tr>
<td>Customizing the Shell with Your Own Linux Commands</td>
<td>122</td>
</tr>
<tr>
<td>Shutting Down and Rebooting Your Raspberry Pi</td>
<td>124</td>
</tr>
</tbody>
</table>

PART 3: USING THE RASPBERRY PI FOR BOTH WORK AND PLAY | 125 |

CHAPTER 6: **Being Productive with the Raspberry Pi** | 127 |
Installing LibreOffice on Your Raspberry Pi	128
Working with LibreOffice on the Raspberry Pi	128
Saving your work	129
Writing letters in LibreOffice Writer	129
Managing your budget in LibreOffice Calc.	131
Creating presentations in LibreOffice Impress	134
Creating a party invitation with LibreOffice Draw	136

CHAPTER 7: **Editing Photos on the Raspberry Pi with GIMP** | 139 |
Working with GIMP	140
Understanding the GIMP screen layout	140
Resizing an image in GIMP	142
Cropping your photo	144
Rotating and flipping your photo .. 145
Adjusting the colors ... 145
Fixing imperfections ... 146
Converting images between different formats 147
Finding Out More about GIMP .. 147

CHAPTER 8: Playing Audio and Video on the Raspberry Pi 149
Setting Up Your Media Center ... 149
Navigating the Media Center ... 150
Adding Media ... 151
 Adding music ... 152
 Adding videos ... 153
 Adding pictures .. 154
 Streaming media ... 155
Playing Music ... 155
Playing Videos .. 156
Viewing Photos .. 157
Changing the Settings ... 157
Using a Remote Control .. 158
Turning Off Your Media Center .. 158
Playing Music in the Desktop Environment 158

PART 4: PROGRAMMING THE RASPBERRY PI 161

CHAPTER 9: Introducing Programming with Scratch 163
Understanding What Programming Is 164
Working with Scratch ... 164
 Understanding the Scratch screen layout 165
 Positioning and resizing your sprite 166
 Making your sprite move .. 167
 Changing your sprite’s appearance 172
 Adding sounds and music .. 176
 Creating scripts ... 178
 Using the Wait block to slow down your sprite 180
 Saving your work ... 180
 What’s new in Scratch 2 ... 181

CHAPTER 10: Programming an Arcade Game Using Scratch ... 183
Starting a New Scratch Project and Deleting Sprites 184
Changing the Background ... 185
Adding Sprites to Your Game .. 185
Drawing Sprites in Scratch ... 186
Naming Your Sprites .. 189
Controlling When Scripts Run ..190
 Using the green flag to start scripts190
 Using the Forever Control block191
 Enabling keyboard control of a sprite192
 Enabling a sprite to control another sprite193
Using Random Numbers ..195
Detecting When a Sprite Hits Another Sprite196
Introducing Variables ..197
Making Sprites Move Automatically199
Fixing the Final Bug ..201
Adding Scripts to the Stage ..203
Duplicating Sprites ...203
Playing Your Game ..204
Adapting the Game’s Speed ...204
Taking It Further with Scratch ...205

CHAPTER 11: Writing Programs in Python207
 Working with Python ..208
 Entering your first Python commands208
 Using the shell to calculate sums210
 Creating the Times Tables Program212
 Creating and running your first Python program213
 Using variables ..214
 Accepting user input ...216
 Printing words, variables, and numbers together216
 Using for loops to repeat ..218
 Creating the Chatbot Program221
 Introducing lists ..222
 Using lists to make a random chat program225
 Adding a while loop ...227
 Using a loop to force a reply from the user228
 Using dictionaries ...229
 Creating your own functions231
 Creating the dictionary look-up function234
 Creating the main conversation loop236
 Final thoughts on Chatbot ..236
 The final Chatbot program237

CHAPTER 12: Creating a Game with Python and Pygame Zero239
 Collecting Your Sounds and Images240
 Setting Up Your Folders ...241
Pedestrian Crossing ..347
The Pedestrian Crossing hardware351
The Pedestrian Crossing software352
Taking it further ...356

CHAPTER 17: Lots of Multicolored LEDs357
Making Colors ..359
Using diffusers ...359
Making more colors ..360
The Way Forward ...362
Bit-banging the APA102C protocol365
Creating a class ...366
Rainbow Invaders ...370
Keepy Uppy ...375
LEDs Galore ...378
Current limits ..379
Signals and memory ...379
Display update ..381
Getting more LEDs ..381

CHAPTER 18: Old McDonald's Farm and Other RFID Adventures389
How RFID Work ...390
A MIFARE card's structure ..393
A simple RFID jukebox ...395
A better RFID jukebox ...397
Taking it further ...401
Dressing Up a Paper Doll ..401
Runway time ..406
Old McDonald's Farm ...410
Making sound samples ...411
Making the graphics ..413

PART 6: THE PART OF TENS ..425

CHAPTER 19: Ten Great Software Packages for the Raspberry Pi427
Penguins Puzzle ...428
FocusWriter ...429
Mathematica ..429
XInvaders 3D ..431
Fraqtive ...431
Tux Paint ...432
Grisbi ...433
Beneath a Steel Sky ... 434
Sense HAT Emulator ... 435
Brain Party ... 436

CHAPTER 20: Ten Inspiring Projects for the Raspberry Pi 437
 One-Button Audiobook Player 437
 Weather Station ... 438
 Heart Rate Monitor ... 439
 Electric Skateboard ... 439
 T-Shirt Cannon ... 439
 Panflute Hero .. 440
 Magic Mirror ... 440
 Pi in the Sky .. 441
 Raspberry Turk .. 442
 Sound Fighter ... 443

APPENDIX A: TROUBLESHOOTING AND CONFIGURING THE RASPBERRY PI 445

INDEX .. 459
Introduction

The Raspberry Pi is at the forefront of the maker movement, where people make their own inventions using a mixture of traditional craft skills and modern coding and electronics knowledge. It’s also given more and more people access to a computer that provides a gateway into programming, electronics, and the world of Linux — the technically powerful (and free) rival to Windows and Mac OS. As a supercheap computer, the Raspberry Pi is also being pressed into service in media centers and as a family computer for games, music, photo editing, and word processing.

Although the Raspberry Pi presents new opportunities to everyone, it can also be a daunting prospect. It comes as a bare circuit board, so to do anything with it, you need to add an operating system on an SD or microSD card and connect it up to a screen, mouse, and keyboard. To get started, you need to learn a few basics of Linux, or at least get acquainted with PIXEL, the graphical desktop. You might be a geek who relishes learning new technologies, or you might be someone who wants a new family computer to use with the children. In either case, *Raspberry Pi For Dummies, 3rd Edition*, helps you get started with your Raspberry Pi and teaches you about some of the many fun and inspiring things you can do with it.

About This Book

Raspberry Pi For Dummies, 3rd Edition, provides a concise and clear introduction to the terminology, technology, and techniques that you need to get the most from your Pi. With this book as your guide, you’ll learn how to

- Connect your Raspberry Pi.
- Change its settings so that it works optimally for you.
- Discover and install great free software you can use on your Raspberry Pi.
- Use the desktop environment to run programs, manage files, surf the web, and view photos.
- Use the Linux command line to manage your Raspberry Pi and its files.
- Use the Raspberry Pi as a productivity tool.
» Edit photos.
» Play music and video.
» Create animations and arcade games with the child-friendly Scratch programming language.
» Write your own games and other programs using the Python programming language.
» Compose music by programming with Sonic Pi.
» Get started with electronics, from an introduction to soldering to the design and creation of electronic projects controlled by the Raspberry Pi.

Incidentally, within this book, you may note that some web addresses break across two lines of text. If you’re reading this book in print and want to visit one of these web pages, simply key in the web address exactly as it’s noted in the text, pretending as though the line break doesn’t exist. If you’re reading this as an ebook, you’ve got it easy — just click or tap the web address to be taken directly to the web page.

Why You Need This Book

After you shake the Raspberry Pi out of the little electrostatic bag it comes in, what next?

This book answers that question. It enables you to get your Raspberry Pi up and running and also introduces you to some of the great things you can do with it, through satisfying practical projects. With this book as your companion, you can write games and other programs and create your own electronic gadgets, all with no prior programming knowledge.

The Raspberry Pi is most likely a bit different compared to other computers you’ve used, so this book also helps you to do some of the things on your Pi that you expect of every computer, such as play music and edit documents.

You can learn a lot of this through trial and error, of course, but that can be a frustrating way to spend your time. Using this book as a reference, you can more quickly start using your Raspberry Pi, whatever you plan to do with it.
Foolish Assumptions

Raspberry Pi For Dummies, 3rd Edition, is written for beginners, by which we mean people who have never used a similar computer. However, we do have to make a few assumptions in writing this book, because we wouldn’t have enough space for all its cool projects if we had to start by explaining what a mouse is! Here are our assumptions:

- **You are familiar with other computers, such as Windows or Apple computers.** In particular, we assume that you’re familiar with using windows, icons, and the keyboard and mouse, and that you know the basics of using your computer for things like browsing the Internet, writing letters, or copying files.

- **The Raspberry Pi is not your only computer.** At times, you’ll need to have access to another computer — for example, to create your SD or microSD card for the Pi. (See Chapter 2.) When it comes to networking, we assume you already have a router set up with an Internet connection and a spare port that you can plug the Raspberry Pi into.

- **The Raspberry Pi is your first Linux-based computer.** If you’re a Linux ninja, this book still gives you a solid reference on the Raspberry Pi and the version of Linux it uses, but no prior Linux knowledge is required.

- **You share our excitement.** The Raspberry Pi can open up a world of possibilities to you!

Other than these assumptions, we hope this book is approachable for everyone. The Raspberry Pi is being adopted in classrooms and youth groups, and this book is a useful resource for teachers and students. The Raspberry Pi is also finding its way into many homes, where people of all ages (from children to adults) are using it for education and entertainment.

Icons Used in This Book

If you’ve read other *For Dummies* books, you know that they use icons in the margin to call attention to particularly important or useful ideas in the text. In this book, we use four such icons:

The Tip icon highlights expert shortcuts or simple ideas that can make life easier for you.
Arguably, the whole book talks about technical stuff, but this icon highlights something that's particularly technical. We've tried to avoid unnecessary jargon and complexity, but some background information can give you a better understanding of what you're doing, and sometimes we do need to get quite techy, given the sophistication of the projects you're doing. Paragraphs highlighted with this icon might be worth rereading, to make sure you understand, or you might decide that you don't need to know that much detail. It's up to you!

Although we'd like to think that reading this book is an unforgettable experience, we've highlighted some points that you might want to particularly commit to memory. They're either important takeaways, or they're fundamental to the project you're working on.

As you would do on the road, slow down when you see a Warning icon. It highlights an area where things could go wrong.

Beyond the Book

In addition to what you’re reading right now, this book comes with a free access-anywhere Cheat Sheet with tips on installing software and using Scratch. To get this Cheat Sheet, simply go to www.dummies.com and type Raspberry Pi Dummies Cheat Sheet in the Search box.

Also be sure to check out this book’s companion website (www.dummies.com/extras/raspberrypi3e), where you can download the code listings that appear throughout this book, as well as two bonus appendices (one on The GPIO on the Raspberry Pi and one on the RISC OS) as well as a bonus chapter on Mathematica, a mathematical program.

Both of us maintain our own personal websites too, which contain some additional information on the Raspberry Pi. Mike’s is at www.thebox.myzen.co.uk/Raspberry/Punnet.html, and Sean’s is at www.sean.co.uk.

Where to Go from Here

It's up to you how you read this book. It's been organized to take you on a journey from acquiring and setting up your Raspberry Pi to learning the software that comes with it, and from writing your own programs to finally creating your own
electronics projects. Some chapters build on knowledge gained in earlier chapters, especially the sections on Scratch and Python — and all of Part 5.

We understand, though, that some projects or topics might interest you more than others, and you might need help in some areas right now. When a chapter assumes knowledge from elsewhere, we include cross-references to help you quickly find what you might have missed. We also include some signposts to future chapters, so you can skip ahead to a later chapter if it provides the quickest answer for you.

If you haven’t set up your Pi yet, start with Part 1. If you have your Pi up and running, Part 2 shows you how to use the software on it. Part 3 covers productivity, creativity, and entertainment software. To flex your programming muscles, perhaps for the first time, read Part 4. You can learn Scratch, Python, or Sonic Pi here, and feel free to start with any one of those languages. The Python chapters provide a good foundation for Part 5, where you can start building your own electronics projects.
1

Setting Up Your Raspberry Pi
IN THIS PART . . .

Get to know the Raspberry Pi and what other equipment you will need to be able to use it.

Download the Linux operating system and prepare an SD or MicroSD card for use on your Raspberry Pi.

Connect your Raspberry Pi to the power, USB hub, keyboard, mouse, and screen.

Install and test the Raspberry Pi Camera Module.

Change the settings on your Raspberry Pi.
Chapter 1

Introducing the Raspberry Pi

The Raspberry Pi is perhaps the most inspiring computer available today. Although most of the computing devices being used (including phones, tablets, and game consoles) are designed to stop people from tinkering with them, the Raspberry Pi is exactly the opposite. From the moment you see its shiny green circuit board, it invites you to prod it, play with it, and create with it. It comes with the tools you need to start creating your own software (or programming), and you can connect your own electronic inventions to it. It’s cheap enough that if you break it, it won’t break the bank, so you can experiment with confidence.

Lots of people are fired up about its potential, and they’re discovering exciting new ways to use it. Dave Akerman (www.daveakerman.com) and friends attached one to a weather balloon and sent it nearly 40 kilometers high to take pictures of the Earth from near space using a webcam. (You can read about Dave’s ballooning project in Chapter 20.)

Professor Simon Cox and his team at the University of Southampton connected 64 Raspberry Pi boards to build an experimental supercomputer, held together by Lego bricks. In the supercomputer (see Figure 1-1), the Raspberry Pis work together to solve a single problem. The project has been able to cut the cost of a
supercomputer from millions of dollars to thousands or even hundreds of dollars, making supercomputing much more accessible to schools and students. Others have also experimented with combining the processing power of multiple Pis. There’s even an off-the-shelf kit you can use to combine four Raspberry Pi Zeros with a full-size Raspberry Pi (the Cluster HAT from Pimoroni) so that you can experiment with running programs across multiple Pis at the same time.

The Pi is also being used to make weather stations, fitness gadgets, gaming devices, audiobook players, electric skateboards, and much more, as you discover in Chapter 20.

Although those projects are grabbing headlines, another story is less visible but more important: the thousands of people of all ages who are taking their first steps in computer science, thanks to the Raspberry Pi.

Both of the authors of this book used computers in the 1980s, when the notion of a home computer first became a reality. Back then, computers were less friendly than they are today. When you switched them on, you were faced with a flashing cursor and had to type something in to get it to do anything. As a result, though, a whole generation grew up knowing at least a little bit about how to give the computer commands, and how to create programs for it. As computers started to use mice and windows, people didn’t need those skills any more, and they lost touch with them.
Eben Upton, designer of the Raspberry Pi, noticed the slide in skill levels when he was working at Cambridge University’s computer laboratory in 2006. Students applying to study computer science started to have less experience with programming than students of the past did. Upton and his university colleagues hatched the idea of creating a computer that would come supplied with all the tools needed to program it — and would sell for a target price of $25 (about £20). It had to be able to do other interesting things, too, so that people were drawn to use it, and it had to be robust enough to survive being pushed in and out of school bags hundreds of times.

That idea started a six-year journey that led to the Raspberry Pi you probably have on your desk as you read this book. It was released in February 2012, and sold half a million units by the end of the quarter. By July 2017, there were more than 14 million Raspberry Pis in homes, schools and workplaces, 10 million of them made in the UK. It is, by a large margin, the best-selling British computer of all time.

Getting Familiar with the Raspberry Pi

When your Raspberry Pi arrives, you’ll see that it’s a circuit board, with components and sockets stuck on it, as shown in Figure 1-2. In an age when most computing devices are sleek and shiny boxes, the spiky Pi, with tiny codes printed in white all over it, seems alien. That’s a big part of its appeal, though: Many of the cases you can buy for the Raspberry Pi are transparent because people love the look of it.
Over the years, the Raspberry Pi has evolved, increasing its memory, improving its performance, and adding features. So which one should you get? Here’s an overview designed to help you decide:

» **Raspberry Pi 3 Model B**: The third generation of the Raspberry Pi, it represents the best all-round Raspberry Pi at the time of writing. According to the Raspberry Pi Foundation, it is 50 to 60 percent faster than the previous model, and ten times faster than the original Raspberry Pi. It includes 1GB of memory, four USB ports, built-in Wi-Fi and Bluetooth, and an Ethernet port for a wired Internet connection. It has 40 General Purpose Input/Output (GPIO) pins, which you can use to connect to your own electronics projects. Like previous Pi models, it’s about the size of a credit card. As with any current Raspberry Pi, it uses a MicroSD card for storage. If you’re not sure which model to get and your budget allows, get this one. It represents the fastest performance, and offers the best experience on the desktop. Its price is around $35 (about £30).

It’s called the Model B, incidentally, as a tribute to the BBC Microcomputer that was popular in the U.K. in the 1980s. It’s sobering to think that the BBC Micro cost about ten times the price of a Raspberry Pi, which, thanks to 35 years of progress in computer science, has more than 7,800 times more memory.

» **Raspberry Pi 1 Model A+**: A cut-down model, it is ideal for projects that need lower power consumption — typically battery-based projects. It is suitable for robots and projects in remote locations, where a wired electricity supply isn’t viable and batteries must be used instead. It does not have an Ethernet socket, and only has one USB port, although you can connect it to a USB hub to use more devices simultaneously. It does have the full complement of 40 GPIO pins, though, so you should find that your projects and add-ons work with it. Like the Model B, it includes an audio output (headphones-style) socket. This model has 512MB of memory and a price of $20 (or £20). The Model A+ is slightly shorter on the long side than the Raspberry Pi 3, measuring 6.5 centimeters by 5.5 centimeters.

» **Raspberry Pi Zero**: The Raspberry Pi Foundation astounded everyone when it gave this computer away with the print edition of its magazine *The MagPi*. The Raspberry Pi Zero measures 6.5 centimeters by 3 centimeters, is extremely lightweight, and has 512MB of memory and one Micro USB port. If you want to use the GPIO, you’ll need to solder or affix your own pins, available separately. (You can read about adding GPIO pins to the Pi Zero in Chapter 16.) You’ll also need a converter for the Mini HDMI socket, and for the Micro USB socket, so you should expect to spend a bit more than the price of the Pi (and have a bit more complexity in your setup). Billed as the $5 computer, the Raspberry Pi Zero has at times been difficult to get hold of, which is perhaps not surprising given the phenomenal demand for it.
» **Raspberry Pi Zero W:** Released in February 2017, the Raspberry Pi Zero W added Wi-Fi and Bluetooth, and compatibility with the Raspberry Pi Camera Module. The Pi Zero W costs around $10 (or about £10). If you’re happy to solder your own GPIO pins, or you don’t need them, the Raspberry Pi Zero or Zero W represents a great entry point to the Raspberry Pi family. After the Raspberry Pi Model 3, the Pi Zero W is our recommended best buy.

Of course, the older Raspberry Pis are still out there. Recent models usually remain in production while there is demand, and you can buy secondhand versions online from websites such as eBay. Generally speaking, the newer the model, the faster its performance. Memory upgrades have made a difference, as well as the use of more powerful processors, as the Pi has evolved. There are plenty of uses for the Pi that don’t need especially fast performance, though, so you might find that an older Pi is perfect for your project. The older models are described in this list:

» **Raspberry Pi 1 Model B with 256MB memory:** Although it’s called Model B, this was the first Raspberry Pi to be released, in February 2012. The Raspberry Pi Model B features an Ethernet connection for the Internet and two USB ports. It uses an SD card for storage.

» **Raspberry Pi 1 Model B with 512MB memory:** Released in October 2012, the Raspberry Pi Model B had twice the memory capacity. This improved the speed of some software, especially applications that used images heavily.

» **Raspberry Pi 1 Model A:** The Model A, released in February 2013, is a stripped-down version of the Model B. It has just one USB port and doesn’t have an Ethernet port for connecting to the Internet. It has 256MB of memory.

» **Raspberry Pi 1 Model B+:** The Model B+, released in July 2014, has been described by the Raspberry Pi Foundation as “the final evolution of the original Raspberry Pi.” It runs all the same software as the previous versions of the Raspberry Pi, but it has four USB ports, more GPIO pins for connecting electronics projects to the Pi, and lower power consumption and better audio than the Model B. In common with the Model B, it has 512MB of memory. Although all previous versions use SD cards for data storage, the Model B+ introduced the smaller MicroSD cards, which are now standard on the Raspberry Pi.

» **Raspberry Pi 2 Model B:** Launched in February 2015, this model doubled the memory on the Model B+ to 1GB. It increased performance, compared to the Model B+, while retaining its physical features. Over the years the Pi’s performance has been improved through new software releases as well as updates to the hardware. The Pi 2 represents an immediately noticeable speed-up, compared to the Model B+.
If you’re using anything earlier than the Model B+, you’ll need full-size SD cards (not MicroSD) for storage, and you’ll only have 26 GPIO pins to play with. Current add-ons are unlikely to be compatible with the early boards, so check their requirements before you buy.

In this book, we offer guidance on older models where possible but will assume you’re using at least a Model B+ for the projects. For best performance, we recommend using a current model, if possible.

You’ll also see the Raspberry Pi Compute Module in the online stores alongside the Raspberry Pi, but this is something quite different. It’s aimed at engineers creating industrial applications (known as embedded systems) or products based on Raspberry Pi technology. We only mention it here in case you wonder what it is: It’s not covered further in this book, and it’s almost certainly not what you want to buy for your first Raspberry Pi.

The Raspberry Pi was made possible in part by the advances in mobile computer chips that have happened in recent years. At its heart is a Broadcom chip (BCM2835, BCM2836, or BCM2837) that contains an ARM central processing unit (CPU) and a Videocore IV graphics processing unit (GPU). The CPU and GPU share the memory between them. The GPU is powerful enough to be able to handle Blu-ray quality video playback.

Instead of running Windows or Mac OS, the Raspberry Pi uses an operating system called Linux. It’s a leading example of open source, a completely different philosophy to the commercial software industry. Rather than being created within the heavily guarded walls of a company, with its design treated as a trade secret, Linux is built by companies and expert volunteers working together. Anyone is free to inspect and modify the source code (a bit like the recipe) that makes it work. You don’t have to pay to use Linux, and you’re allowed to share it with other people, too.

You probably won’t be able to run the software you have on your other computers on your Raspberry Pi. It won’t run Windows or Mac software, and not all Linux software works on the Raspberry Pi. But a lot of Linux software that is compatible with the Raspberry Pi is available and is free of charge.

Figuring Out What You Can Do with a Raspberry Pi

The Raspberry Pi is a fully featured computer, and you can do almost anything with it that you can do with a desktop computer.
It has a graphical windows desktop to start and manage programs (see Chapter 4) as well as a shell for accepting text commands. (See Chapter 5.) You can use it for browsing the Internet (see Chapter 4), or for word processing and spreadsheets (see Chapter 6), or for editing photos. (See Chapter 7.) You can use it for playing back music or video (see Chapter 8) or for playing games. (See Chapter 19.) You can use the built-in software to write your own music, too. (See Chapter 14.) It’s the perfect tool for homework, but it’s also a useful computer for writing letters, managing your accounts, and paying bills online.

The Raspberry Pi is at its best, however, when it’s being used to learn how computers work, and how you can create your own programs or electronics projects using them. It comes with Scratch (see Chapter 9), which enables people of all ages to create their own animations and games while learning some of the core concepts of computer programming along the way.

It also comes with Python (see Chapter 11), a professional programming language used by YouTube, Google, and Industrial Light & Magic (the special effects gurus for the Star Wars films), among many others.

It has GPIO pins on it that you can use to connect up your own circuits to the Raspberry Pi, so you can use your Raspberry Pi to control other devices and to receive and interpret signals from them. In Part 5, we show you how to build some electronic projects controlled by the Raspberry Pi.

Getting Your Hands on a Raspberry Pi

One of the great things about the Raspberry Pi is that it’s established a community of businesses that have created products for it, or have shared in its success by selling it. You can now buy the Raspberry Pi from a wide range of electronics companies for hobbyists. Global retailers include Pimoroni (www.pimoroni.com), The Pi Hut (https://thepihut.com), and Adafruit (www.adafruit.com). It’s also available from the Raspberry Pi’s distributors, RS Components (www.rs-components.com) and Element14 (www.element14.com).

You might also be able to buy it from your local computer or electronics store, although you’ll probably find it’s only available as part of a kit there. Shops often bundle the Raspberry Pi with other items you need to use it. It can be convenient to get everything at once, but it might not represent the cheapest way to get started.
Determining What Else You Need

The creators of Raspberry Pi have stripped costs to the bone to enable you to own a fully featured computer for less than $35, so you’ll need to scavenge or buy a few other bits and pieces in order to use your Pi. We say scavenge because the things you need are exactly the kind of things many people have lying around their house or garage already, or can easily pick up from friends or neighbors. In particular, if you’re using a Raspberry Pi as your second computer, you probably have most of the peripherals you need. That said, you might find they’re not fully compatible with the Raspberry Pi and you need to buy replacements to use with the Pi.

Here’s a checklist of what else you might need:

- **Monitor:** The Raspberry Pi has a high-definition video feed and uses an HDMI (high-definition multimedia interface) connection for it. If your monitor has an HDMI socket, you can connect the Raspberry Pi directly to it. If your monitor does not support HDMI, it probably has a DVI socket, and you can get a simple and cheap converter that enables you to connect an HDMI cable to it. Older VGA (video graphics array) monitors require a device to convert the HDMI signal into a VGA one. If you’re thinking of buying a converter, check online first to see whether it works with the Raspberry Pi. A lot of cheap cables are just cables, when what you need is a device that converts the signal from HDMI format to VGA, not one that just fits into the sockets on the screen and your Raspberry Pi. These converters can be quite expensive, so Gert van Loo has designed a device that uses the Raspberry Pi’s GPIO pins to connect to a VGA monitor. He’s published the design specs so that anyone can build one, and sell it if she wants to, too. Take a look at eBay if you need one, and you might well find what you need. For more information, check out www.raspberrypi.org/blog/gert-vga-adapter. (If your monitor is connected using a blue plug and the connector has three rows of five pins in it, it’s probably a VGA monitor.)

- **TV:** You can connect your Raspberry Pi to a high-definition TV using the HDMI socket and should experience a crisp picture. If you have an old television in the garage, you can also press it into service for your Raspberry Pi. The Pi can send a composite video signal, so it can use a TV as its display. When we tried this, it worked but the text lacked definition, which made it difficult to read. If a TV is your only option, see Appendix A for advice on tweaking the settings to get the clearest possible picture. It’s better to use a computer monitor if you can, though. You’ll need to get a cable with the right connector to fit your Pi: The Model A and Model B have a dedicated RCA video socket, but later models use the headphone socket for RCA video output, too.

- **USB hub:** The Raspberry Pi has one, two, or four USB sockets (depending on the model you get). Consider using a powered USB hub, for two reasons.
Firstly (and especially if you have a Model A, A+, B, or Zero), you’re going to want to connect other devices to your Pi at the same time as your keyboard and mouse, which need two sockets. And secondly, a USB hub provides external power to your devices and minimizes the likelihood of experiencing problems using your Raspberry Pi, especially if connecting relatively power-intensive devices such as hard drives. Make sure your USB hub has its own power source, independent of the Raspberry Pi.

USB keyboard and mouse: The Raspberry Pi only supports USB keyboards and mice, so if you’re still using ones with PS/2 connectors (round rather than flat), you need to replace them.

When the Raspberry Pi behaves unpredictably, it can be because the keyboard is drawing too much power, so avoid keyboards with too many flashing lights and features.

MicroSD card or SD card: The Raspberry Pi doesn’t have a hard drive built into it, so it uses a MicroSD card (current models) or SD card (older models, excluding the Model B+) as its main storage. You probably have some SD cards that you use for your digital camera, although you might need to get a higher-capacity one. We recommend an 8GB card as a minimum, but you can use a 4GB card if you use a media center operating system (OS) like LibreELEC. (See Chapter 8 for a guide to LibreELEC.) Even that isn't much space compared to the hard drive on a modern computer, but you can use other storage devices such as external hard drives with your Raspberry Pi, too. SD and MicroSD cards have different class numbers that indicate how fast you can copy information to and from them. The Raspberry Pi Foundation recommends its branded Class 6 card as a good value and high-performing solution, although online retailers often sell a Class 10 card for this purpose. You will be fine with a Class 6 or higher. The easiest way to get started with the Raspberry Pi is to buy a card with the NOOBS software already on it. (See Chapter 2 for more on NOOBS.) Online retailers, including those mentioned earlier for buying the Pi itself, usually sell an 8GB or 16GB MicroSD card that has the NOOBS software preloaded on it. It comes with an SD card adapter, shown in Figure 1-3, so the card fits the older models (with the adapter) and newer models (without it).

SD or MicroSD card writer: Many PCs today have a slot for SD or MicroSD cards, so you can easily copy photos from your camera to your computer. If yours doesn’t, you might want to consider getting an SD or MicroSD card writer to connect to your computer. You can use it to copy software to an SD card for use with your Raspberry Pi, but you won’t be able to use it to copy files from your Raspberry Pi to a Windows computer. Alternatively, as we’ve said, you can buy a MicroSD card with an SD adapter that has the Raspberry Pi software already on it. You can also use the card writer to create a backup copy of your Raspberry Pi's files and software. (You can read about making back-ups in Chapter 4.)
USB key: A USB key (also known as flash drive or memory stick) can be fairly cheap and high-capacity now (a 64GB USB key is readily affordable), which makes it an ideal complement to your Raspberry Pi. You can transfer files between your PC and your Raspberry Pi using a USB key, too.

USB Wi-Fi adapter: The Model A and A+ don’t have an Ethernet socket, so if you want to connect to the Internet, you’ll need a USB Wi-Fi adapter. You might already have one of these from a laptop. Some are incompatible with the Raspberry Pi, but companies that sell the Pi usually sell a compatible Wi-Fi adapter, too. There is an official Raspberry Pi Wi-Fi adapter, available from the usual Pi retailers.

External hard drive: If you want lots of storage, perhaps so that you can use your music or video collection with the Raspberry Pi, you can connect an external hard drive to it over USB. You’ll need to connect your hard drive through a powered USB hub, or use a hard drive that has its own external power source.

Raspberry Pi Camera Module: The Raspberry Pi has stimulated entrepreneurs to create all kinds of add-ons for it, but the Camera Module is a product that originated at the Raspberry Pi Foundation. This 8-megapixel, fixed-focus camera can be used to shoot HD video and take still photos. There is also a version without an infrared filter (the PiNoIR Camera), which can be used for wildlife photography at night or weird special effects by day.
Speakers: The Raspberry Pi has a standard audio out socket, compatible with headphones and PC speakers that use a 3.5mm audio jack. You can plug headphones directly into it, or use the audio jack to connect to speakers, a stereo, or a TV. If you're using a TV or stereo for sound, you can get a cable that connects the 3.5mm audio jack and the audio input(s) on your television or stereo. You won't always need speakers: If you're using an HDMI connection, the audio is sent to the screen with the video signal, so you won't need separate speakers — but note that this doesn't work if you use a DVI monitor.

Power supply: The Raspberry Pi uses a Micro USB connector for its power supply, and is theoretically compatible with a lot of mobile phone and tablet chargers. In practice, many of these can't deliver enough current (up to 700 milliamperes for a Model A+ and up to 2500 milliamperes for a Raspberry Pi 3 Model B), which can make the Raspberry Pi perform unreliably. It's worth checking to see whether you have a 5V charger that might do the job (it should say on it how much current it provides), but for best results, we recommend buying a compatible charger from the same company that you buy your Raspberry Pi from. There is an official Raspberry Pi power supply available, which works in the U.K., Europe, the U.S./Japan, and Australia/China. For mobile applications, it's possible to power the Raspberry Pi using a battery pack designed for mobile phone charging. Don't try to power the Pi by connecting its Micro USB port to the USB port on your PC with a cable, because your computer probably can't provide enough power for your Pi. You can also power the Pi through the GPIO pins, but you could damage the Raspberry Pi if there is a spike in current or the wrong voltage is applied. If you want to provide power through the GPIO pins, a safer approach is to use a HAT device (Hardware Attached on Top) designed to sit on the GPIO pins and provide the consistent power you need while protecting the Pi underneath. The Raspberry Pi Foundation advises that you should only use batteries to power your Raspberry Pi if you know what you're doing, because there's a risk of damaging your Raspberry Pi. For more details on the power requirements of various Raspberry Pi models, consult the FAQ at www.raspberrypi.org/help/faqs/.

Case: It's safe to operate your Raspberry Pi as is, but many people prefer to protect it from spills and precariously stacked desk clutter by getting a case for it. You can buy plastic cases on eBay (www.ebay.com), many of which are transparent, so you can still admire the circuitry and see the Pi's LED lights. These cases typically come supplied as simple kits for you to assemble. The Pibow Coupe (https://shop.pimoroni.com/collections/pibow) is one of the most attractively designed cases, assembled from layers of colored plastic. (See Figure 1-4.) It's designed by Paul Beech, who designed the Raspberry Pi logo. There are also official red-and-white cases for the Raspberry Pi 3 (compatible with the B+ and later models) and the Raspberry Pi Zero. The case for the Pi Zero includes three different tops, so you can either seal it, leave a camera hole, or have access to the GPIO pins. You don't have to buy a case,
though. You can go without or make your own using cardboard or Lego bricks. Whatever case you go with, make sure you can still access the GPIO pins so that you can experiment with connecting your Pi to electronic circuits and try the projects in Part 5 of this book.

Cables: You’ll need cables to connect it all up, too. In particular, you need an HDMI cable (if you’re using an HDMI or DVI monitor), an HDMI-to-DVI adapter (if you’re using a DVI monitor), an RCA cable (if you’re connecting to an older television), an audio cable (if you’re connecting the audio jack to your stereo), and an Ethernet cable (for networking on models with an Ethernet port). Note that current Raspberry Pi models send the RCA video signal through a 3.5mm jack (headphone socket), and earlier ones had a dedicated RCA socket. You will need a different cable, depending on which version of the Pi’s design you have. If you have a Raspberry Pi Zero, you will also need a converter for the Mini HDMI socket, and for the Micro USB socket. You can get these cables from an electrical-components retailer and might be able to buy them at the same time as you buy your Raspberry Pi. Any other cables you need (for example, to connect to PC speakers or a USB hub) should come with those devices.
The Raspberry Pi has been designed to be used with whatever accessories you have lying around, to minimize the cost of getting started, but in practice not all devices are compatible. In particular, incompatible USB hubs, keyboards, and mice can cause problems that are hard to diagnose. USB hubs that feed power back into your Raspberry Pi through the Pi’s USB port (known as backpowering) could potentially cause damage to the Raspberry Pi if they feed in too much power.

A list of compatible and incompatible devices is maintained at http://elinux.org/RPi_VerifiedPeripherals, and you can check online reviews to see whether others have experienced difficulties using a particular device with the Raspberry Pi.

If you’re buying new devices, you can minimize the risk by buying recommended devices from Raspberry Pi retailers.

In any case, you should set a little bit of money aside to spend on accessories. The Raspberry Pi is a cheap device, but buying a keyboard, mouse, USB hub, and cables can easily double or triple your costs, and you might have to resort to that if what you have on hand turns out not to be compatible.
Chapter 9

Introducing Programming with Scratch

The Raspberry Pi was created partly to inspire the next generation of programmers, and Scratch is the perfect place to start. With it, you can make your own cartoons and games and discover some of the concepts that professional programmers use every day.

Scratch is designed to be approachable for people of all ages. The visual interface makes it easy to see what you can do at any time, without having to remember any strange codes, and you can rapidly achieve great results. Scratch comes with a library of images and sounds, so it takes only a few minutes to write your first Scratch program.

In this chapter, we introduce you to Scratch so that you can start to experiment with it. In Chapter 10, we show you how to use Scratch to make a simple arcade game.
Understanding What Programming Is

Before we dip into Scratch, we should clear up some of the jargon surrounding it. A program is a repeatable set of instructions to make a computer do something, such as play a game. Those instructions can be extremely complicated because they have to describe what the computer should do in detail. Even a simple bouncing-ball game requires instructions for drawing the ball, moving it in different directions, detecting when it hits something, and then changing its direction to make it bounce.

Programming is the art and science of creating programs. You can create programs in lots of different ways, and Scratch is just one of them. In Chapter 11, you read about Python, another one.

Scratch and Python are both programming languages, different ways of writing instructions for the computer. Different programming languages are best suited for different tasks. Scratch is ideal for making games, for example, but it’s not much use if you want to create a word processor. Using Python to create games takes longer, but it is more powerful than Scratch and gives you much more flexibility in the type of things you can get the computer to do.

Working with Scratch

There are two versions of Scratch installed in Raspbian:

» **Scratch**: This is the original version of Scratch, widely known as Scratch 1.4.

» **Scratch 2**: This is an implementation of the newer version of Scratch, widely known as Scratch 2.0. If you use the online version of Scratch (at https://scratch.mit.edu), Scratch 2 is the version you are familiar with. Scratch 2 adds some features that are not available in the original Scratch, including the ability for sprites (which are, roughly speaking, game characters) to create copies of themselves, and a feature to make your own blocks (or instructions). (Both are described at the end of this chapter.) Because Scratch 2 requires the Flash software to work, it only runs on the Raspberry Pi 2 and Raspberry Pi 3. Some programs, especially action games, run significantly slower in this version of Scratch, because of all the layers of software required to run Flash on the Raspberry Pi. Simple programs will run fine, but if you want to make games, you will soon notice a performance difference.
Both versions of Scratch have been enhanced with features for controlling electronics projects with your Raspberry Pi, as you will see in Chapter 16.

If you’re a newcomer to Scratch, we recommend you start by using the original Scratch, because your programs will run much more quickly. If you’re already familiar with Scratch from the online version, or you’re building programs that could use the additional features of Scratch 2, you might prefer to choose that version instead.

Because of the speed issues associated with Scratch 2, and the fact that it doesn’t run on the Model B+ or earlier Pi models, we’re going to use the original Scratch in our examples. We will, however, introduce you to both versions in this chapter so you can find your way around Scratch 2 as you build your own projects.

You can take files you create in Scratch and use them in Scratch 2, but you can’t take Scratch 2 files and open them in Scratch.

You access Scratch from the desktop environment.

To start Scratch, select your chosen version from the Applications menu in the top left of the screen. You can find Scratch and Scratch 2 in the Programming folder.

Understanding the Scratch screen layout

Scratch divides the screen into four main areas, as you can see in Figures 9-1 and 9-2. The Stage is where you can see your game or animation take shape. There’s a cat on it already, so you can get started straightaway by making it do things, as you see in a minute. In Scratch, the Stage is in the top right, and in Scratch 2, it’s in the top left.

Underneath the Stage is your Sprite List. You can think of sprites as the characters in your game. They’re images that you can make do things, such as move around or change their appearance. For now, there’s just the cat, which has the name Sprite1 in Scratch and Cat1 in Scratch 2.

You create a Scratch program by snapping together blocks, which are short instructions. You find the blocks in the Blocks Palette, which is on the left in Scratch and in the middle in Scratch 2. In both cases, it displays the Motion blocks by default. They include instructions to move ten steps, rotate, go to a particular grid reference, and point in a particular direction.

The Scripts Area is where the magic happens! You assemble your program in this space by dragging blocks into it from the Blocks Palette. The Scripts Area is in the
middle in the original Scratch and on the right in Scratch 2. In the original Scratch, you can use two buttons in the top right (refer to Figure 9–1) to toggle the Stage between full size and small. In Scratch 2, click the Edit menu to find the option for Small Stage Layout. When the Stage is small, the Scripts Area is bigger, so you might find that useful when you’re writing scripts later in this chapter.

Positioning and resizing your sprite

You can drag and drop your sprite (the cat) around the Stage to position it where you would like it to be at the start of your program.

You can also resize the sprite. Two buttons above the Stage (refer to Figures 9–1 and 9–2) are used to enlarge or shrink a sprite. Click one of them, and the mouse pointer changes to arrows pointing outward (for enlarging) or inward (for shrinking). Click your sprite on the Stage repeatedly to change its size.
When you’ve finished resizing, click something that isn’t a sprite to return the mouse pointer to normal and stop resizing.

Making your sprite move

Experimenting with Scratch is easy. To try out different blocks, just click them in the Blocks Palette. For example, try clicking the Move 10 Steps block, and you should see the cat move to the right. You can also turn the sprite 15 degrees in either direction by clicking the appropriate blocks.

If your cat goes somewhere that you don’t want it to (don’t they always?), you can click it on the Stage and drag it back to where you want it. You can reset rotation in the original Scratch, too, by clicking the tiny cat at the top of the Scripts Area, holding down the mouse button, and rolling the mouse in a circle pattern on the desk until the sprite is at the angle you want. In Scratch 2, you can correct a
sprite’s rotation by clicking the sprite’s i button in the Sprite List, and then clicking and dragging the blue line on the direction indicator. When you’ve finished, click the back arrow to show the Sprite List again.

Not all of the blocks will work at the moment because some of them need to be combined with other blocks. There’s no harm in experimenting, however. If you click something that doesn’t work, you might get an error message, but you won’t cause any harm to Scratch or your Raspberry Pi.

Next, we talk you through the different Motion blocks you can use.

Using directions to move your sprite

You can use two different methods to position and move sprites. The first is to make your sprite “walk,” and to change its direction when you want it to walk the other way. The other is using grid coordinates, which we cover in the next section.

Here are the five blocks you use to move your sprite in this way (see Figure 9-3):

- **Move 10 Steps**: This makes your sprite walk in the direction it is facing. If your sprite has been rotated, the steps taken could move it in a diagonal line across the Stage. You can click the number in this block and then type another number to increase or decrease the number of steps taken, but bigger numbers spoil the illusion of animation. It stops looking like the sprite is walking across the screen when the number of steps taken is too big.

- **Turn Right or Left 15 Degrees**: This block rotates your sprite. As with the number of steps, you can edit the number to change the degree by which your sprite is rotated. It walks in the direction it is facing when you use the Move 10 Steps block.
Point in Direction 90: Whatever direction your sprite is facing, this block points it in the direction you want it to face. Use this block as is to reset your sprite to face right. You can change the number in this block to change the direction you want your sprite to face, and the numbers are measured in degrees from the position of facing up. (See Figure 9-4.) It helps to think of it like the hands of a clock: When the hand is pointing right, it’s 90 degrees from the 12 o’clock position; when it’s pointing down, it’s 180 degrees from the top. To point left, you use –90. When you click the arrow in the right of the number box, it gives you a menu from which you can select the four main directions — but you can enter any number.

You might be wondering whether you can enter 270 to point left, and the answer is that it works, but it can cause errors in your programs. If you turn your cat to direction 270 and then ask Scratch which way the cat is facing, it tells you –90. To avoid any inconsistencies like this, keep direction numbers in the range from –179 to 180.

Point Towards: You can also tell the sprite to point toward the mouse pointer or another sprite. Use the menu in this block to choose what you would like your sprite to point toward.

Figure 9-4: The number of degrees used to face in different directions.
If you’re changing the number value in a block, you still need to click the block to run it.

Using grid coordinates to move and position your sprite

The second way you can move and position your sprite is to use grid coordinates. That makes it easy to position your sprite at an exact place on the screen, irrespective of where it is now.

Every point on the Stage has two coordinates: an X position (indicating where it is horizontally) and a Y position (indicating where it is vertically). The X positions are numbered from –240 at the far left to 240 at the far right. The Y positions are numbered from –180 at the bottom edge of the Stage to 180 at the top edge. That means the Stage is a total of 480 units wide and 360 units tall. The center point of the screen, where your cat begins its day, is where X equals 0 and Y equals 0. Figure 9–5 provides a quick visual reference of how the coordinates work.

When you move the mouse over the Stage, the grid reference of your mouse pointer is shown just underneath the Stage on the right.

FIGURE 9-5: The grid coordinates on the Stage.

Seven Motion blocks use the X and Y coordinates (see Figure 9–6):

- **Go to x:0 y:0**: You can use this block to position your sprite at a specific point on the Stage. By default, it returns a sprite to the center of the screen (x=0, y=0). Edit the numbers for X and Y to position your sprite somewhere else.
» **Go to:** Use this block to move your sprite to the mouse pointer's location, or to the location of another sprite, if you have more than one.

» **Glide 1 secs to x: 0 y: 0:** When you use the Go To block, your sprite just jumps to its new position. The Glide block makes your sprite float there smoothly instead. You can change the number of seconds the glide takes, including using decimals for part of a second (for example, 0.5 for half a second).

» **Change X by 10:** This moves your sprite ten units to the right. You can change the number of units and use a negative number if you want to move left instead. Note that this doesn't affect your sprite's vertical position and is independent of which way around your sprite is facing.

» **Set X to 0:** This changes the horizontal position of your sprite on the Stage, without affecting its vertical position. The value 0 returns it to the center of the screen horizontally, and you can edit the number to position it left or right of that. Use a negative number for the left half of the screen and a positive number for the right half.

» **Change Y by 10:** This moves your sprite ten units up the Stage, without affecting its horizontal position, and irrespective of which direction it is facing. You can change the number of units and use a negative number to move the sprite down the screen instead.

» **Set Y to 0:** This changes the vertical position of your sprite on the Stage without affecting its horizontal position, and without regard to which way it faces. Use a positive value for the top half of the Stage and a negative value for the lower half.

FIGURE 9-6: The blocks used for moving sprites using grid coordinates.
You need to run a block to actually see its effect on your sprite. Do this by clicking it.

Showing sprite information on the Stage

It can be hard to keep track of where your sprite is and in which direction it’s facing, but you can show the values for its X position, Y position, and direction on the Stage. Select the boxes at the bottom of the Blocks Palette to do this, as shown in Figure 9–7. They clutter the screen a bit, but they can be essential tools for testing when you’re creating a game.

![Figure 9-7: The blocks used to show sprite information on the Stage.](image)

Changing your sprite’s appearance

As well as moving your sprite around the screen, you can change what it looks like.

Using costumes

One way to think of sprites is as the characters in a game (although they can be used for lots of other objects, too, such as obstacles). Each sprite can have a number of *costumes*, which are different pictures of it. If the costumes look fairly similar, you can create the illusion of animation by switching between them. Your cat sprite comes with two costumes, and when you switch between them, it looks like the cat is running. You can think of a costume as being one image in an animation sequence (an *animation frame*).

You can see the costumes for your sprite by clicking the Costumes tab at the top of the Scripts Area, as shown in Figure 9–8. If you want to modify the cat’s appearance, you can click the button to edit one of the costumes in Scratch or simply click the sprite in Scratch 2 and use the editing canvas to its right. If you want to create a new animation frame, you can click the Copy button beside a costume in Scratch, or in Scratch 2 you can right-click the costume and choose duplicate from the menu that opens. You can then edit the bits you want to change.
It doesn’t matter much when you’re experimenting with sprites, but when you make your own games and animations, you can save yourself a lot of brain ache by giving your sprites meaningful names. It’s much easier to remember that the costume with the name game over should be shown when the player is defeated than it is to remember it’s called costume7. To rename a costume, click the Costumes tab to show the costumes, and then click the costume’s current name (refer to Figure 9-8) and type its new name. In Scratch 2, the costume’s name is shown above the editing canvas.

In the Blocks Palette, there are two blocks you can use to switch between costumes. (See Figure 9-9.) Click the Looks button above the Blocks Palette to show them:

- **Switch to Costume**: If you want to switch to a particular costume, choose its name from the menu in this block and then click the block.
- **Next Costume**: Each time you use this block, the sprite changes to its next costume. When the costumes run out, it goes back to the first one again.

You can show a sprite’s costume number on the Stage, too, so that it’s easier for you to work out what’s going on. Just select the check box next to Costume # in the Blocks Palette.

Using speech and thought bubbles

Scratch includes four blocks you can use to show a speech bubble or a thought bubble onscreen. (Refer to Figure 9-9.) To see them, and to see the other blocks that change a sprite’s appearance, click the Looks button above the Blocks Palette. The speech and thought bubbles are great for giving a message to the player or
viewer. You can edit the word in the block (Hello! or Hmm...) to change the text in the bubble. Figure 9–10 shows the speech bubbles (top row) and thought bubbles (bottom row) in action.

If you use one of the options with a length of time in it, the sprite pauses for that length of time and the bubble disappears when it has elapsed.

If you use a block without a length of time, you can make the bubble disappear again by using the Say or Think block again but editing the text so that the text box in the block is empty.
Using graphic effects

You can apply several graphic effects to your sprite using Looks blocks. In Figure 9-10, we’ve used eight sprites to demonstrate them on the Stage. The Color effect changes the sprite’s Color Palette, turning orange to green in the case of the cat. The Fisheye effect works like a fish-eye lens, making the central parts of the sprite appear bigger. Whirl distorts the sprite by twisting its features around its middle. Pixelate makes the sprite blocky. Mosaic shrinks the sprite and repeats it within the space it usually occupies. The Brightness and Ghost effects can sometimes look similar, but the Brightness effect increases the intensity of the colors (turning the cat’s black outline silver while softening the orange), and the Ghost effect fades out all colors evenly.

Here are the three blocks you use to control graphic effects:

- **Change Color Effect by** 25: You can select the effect you want to change (by default, it’s the color effect) and enter the amount of it you want to add. You can use negative numbers to reduce the extent to which the effect is applied to your sprite. The color effect has 200 different levels (from 0 to 200), and the other effects typically look best with levels in the range from –100 to 100. Experiment!

- **Set Color Effect to** 0: Use this block to set a chosen effect to a specific level. Choosing 0 turns the effect off again. You can use any of the seven effects with this block.

- **Clear Graphic Effects**: This block removes all graphic effects you’ve applied to a particular sprite so that it looks normal again.

The graphic effects look great, but they are quite slow on a Raspberry Pi Model B+ or older. They’re best used in moderation for special moments in your animation or game; otherwise, they might make it appear unresponsive.

Resizing your sprite

Earlier in this chapter, we show you how to change the starting size of your sprite on the Stage. You can use blocks to issue instructions to change its size, too, so you could make it grow larger as the game progresses, for example.

There are two blocks you can use to resize your sprite:

- **Change Size by** 10: This block enables you to change the size of your sprite by a certain number of units, relative to its current size. As usual, you can edit the number. If you want to decrease the sprite’s size, use a negative number.
You can also select the check box beside the Size block to show the sprite’s size on the Stage, in the same way you display other sprite information there. (See “Showing sprite information on the Stage,” earlier in this chapter.) This can be useful for testing purposes.

Changing your sprite’s visibility

Sometimes, you might not want your sprite to be seen on the Stage. If a spaceship is blown up in your game, for example, you want it to disappear from view. These two blocks give you control over whether a sprite is visible:

- **Hide**: Use this block to make your sprite invisible on the Stage. If a sprite is hidden, Scratch won’t detect when it touches other sprites, but you can still move a hidden sprite’s position on the Stage so that it’s in a different place when you show it again.

- **Show**: By default, your sprite is visible, but you can use this block to reveal it again after you have hidden it.

Sometimes, sprites might get on top of each other. You can use the Go to Front block to make a sprite appear on top of all the others. To push a sprite backward and allow others to appear on top of it, use the Go Back 1 Layers block.

Adding sounds and music

As well as changing a sprite’s appearance, you can give it some sound effects. Scratch comes with sounds, including slurps, sneezes, and screams; ducks, geese, and owls; and pops, whoops, and zoops. You can find effects for most occasions, and many of them are natural partners for one of the sprites that Scratch provides.

To add a sound to your sprite, you have to do one task first: Import the sound to your sprite. Here’s how you’d do that:

1. **Click the Sounds tab above the Scripts Area, as shown in Figure 9-11, and then click the Import button.**

 In the original Scratch, it’s labelled Import, but in Scratch 2, the button looks like a tiny speaker: Don’t confuse it with the large speaker used to represent any existing sound effect on the sprite.
2. In the file browser that appears, browse the provided sounds.

3. (Optional) In Scratch, click a file once to hear a preview of it. In Scratch 2, click the play button beside the file to hear it.

4. Click a file twice to bring it into your sprite.

5. (Optional) After you’ve imported a sound, you can preview it. Click the speaker beside it in Scratch, or the play button in the Sounds Area in Scratch 2. In both versions of Scratch, click the X button to delete a sound from your project.

 If you delete a sound in this way, it remains on your SD card so that you can import it again later.

After a sound has been imported, you use one of the Sound blocks to play a sound. To see all available Sound blocks, click the Sound button at the top of the Blocks Palette first.

The Play Sound block enables you to choose which sound you’d like to play from those you have imported. The Play Sound Until Done block stops the program from running any blocks joined underneath this one until the sound has finished playing.

The sound is imported to a particular sprite, so if you can’t see it as one of the choices in the Play Sound block, be sure you’ve imported it to the correct sprite. In Chapter 10, we cover how to use multiple sprites in a project.
There are also blocks that let you use virtual drums and pitched instruments to create music using Scratch. Notes are numbered: C is 60, C# is 61, D is 62, and so on. There’s a block called Play Note 60 for 0.5 Beats that plays a note with a particular number for a certain duration. When you click the menu in this block to specify which note to play, a piano opens that you can use to select the note.

If you’re new to music, you can generally get a good result by starting with C, sticking to the white notes, and making sure no two consecutive notes are too far apart on the piano.

You can use a block called Set Instrument to 1 to change the instrument, but if you want to use this, you need to install the different instruments first if you’re using the original Scratch. To do so, click the Terminal icon on the task bar at the top of the desktop and then issue these commands in the Terminal window (explained in greater depth in Chapter 5):

```
sudo apt-get update
/usr/share/scratch/timidityinstall.sh
```

Finally, in order to finish installing the instruments, you need to reboot your Raspberry Pi. Save your work in any open applications first, and then open the Applications menu, click Shutdown, and choose Reboot.

The note numbers used in Scratch are the same as those used in Sonic Pi. (See Table 14-1, in Chapter 14.)

Creating scripts

Clicking blocks in the Blocks Palette is one way to issue commands to Scratch, but if that’s all you’re doing, you’re not really programming. The fact is, if you have to click each block every time you want to run it, you’re doing all the hard work of remembering the instructions, and the computer can work only as fast as you can click the blocks.

A program is a reusable set of instructions that can be carried out (or run) whenever you want. To start to create a program, you drag blocks from the Blocks Palette and drop them in the Scripts Area in the middle of the screen. Most blocks mentioned so far in this chapter have a notch on the top and a lug on the bottom, so they fit together like jigsaw pieces. You don’t have to align them perfectly: Scratch snaps them together for you if they’re close enough when you release the mouse button.
You put your blocks in the order you want Scratch to run them, starting at the top and working your way down. It’s a bit like making a to-do list for the computer.

A group of blocks in the Scripts Area is called a *script*, and you can run the script by clicking anywhere on it. Its border is highlighted, and you’ll see the cat move around the Stage as you’ve instructed it to.

You can have multiple different scripts in the Scripts Area, so you could have one to make the cat walk left and another to make it walk right, for example. When you add multiple sprites (see Chapter 10), each sprite has its own Scripts Area and scripts there to control it.

If you want to tidy up the Scripts Area, you can move a script by dragging its top block. If you drag a block that is lower down in the script, it is separated from the blocks above it and carries with it all of the blocks below it. If you want to delete a block or set of blocks, drag it back to the Blocks Palette on the left.

The *moonwalk* is the dance, popularized by Michael Jackson, that makes you look like you’re walking forward while you’re actually moving backward. Figure 9-12 shows a script to make your cat moonwalk across the Stage. The first two lines in the script reset the cat to the middle of the screen, facing right. The cat tells you that it loves to moonwalk and then lets out a little whoop like Michael Jackson’s, which it continues for the duration of the dance. The costume switch changes the position of the cat’s legs, and it then glides 150 units to the left. Close the speech bubble by using the Say block with nothing in it, and then switch back to the other costume, which makes the cat’s legs move back to their default position. Give it a go!

Figure 9-12: This is how you make a cat moonwalk. Ow!

Scratch is developed by the Lifelong Kindergarten Group at the MIT Media Lab. See http://scratch.mit.edu.
Using the Wait block to slow down your sprite

As you put your script together, you might find that some movements happen so fast that you can hardly see what’s going on.

If you click the Control button at the top of the Blocks Palette, you can find a set of yellow blocks that are used to govern when particular things happen. You can read more about these in Chapter 10, but for now it’s worth knowing that a block here enables you to wait for a certain number of seconds. Drag this into your script where necessary to introduce a delay so that you can see each of your blocks in action. The length of the delay is 1 second by default, but you can change it to whatever you want, including parts of a second (for example, 0.5 for half a second).

The Say Hello! for 2 Secs block can be also be used to force the script to pause before running any more blocks.

Saving your work

Remember to save your work so that you can come back to it later. You can find the option to save on the File menu, at the top of the screen, or you can click the Floppy Disk icon in the top left in the original Scratch.

In the original Scratch, when the Save Project dialog box opens (see Figure 9-13), you see buttons on the left to choose from various places you could save your file, although you might not have permission to use all of them. (See Chapter 5 for more on permissions.) We recommend that you use the Scratch folder inside your pi directory. On the right, you can add your name and some project notes to remind you later what the project was about. You can see and edit the project notes associated with a file by using the File menu when you’re working on a program.

When you save in Scratch 2, you see a file browser that enables you to choose where to save. Again, we recommend saving in your Scratch folder inside your pi directory.
What’s new in Scratch 2

The two versions of Scratch on your Raspberry Pi share the same core blocks, but there are a few differences in Scratch 2 to be aware of:

- **Events blocks:** This is a new category of blocks introduced in Scratch 2. It includes blocks that were categorized as Control blocks in the older version of Scratch. If the block name starts with "when" or "broadcast," you’ll probably find it in the Events part of the Blocks Palette in Scratch 2. (The exception is When I Start As a Clone, which remains a Control block.)

- **Cloning:** There’s a new feature in Scratch 2 to enable sprites to create copies (or clones) of themselves. Those clones can then run scripts that start when the clone is created. You can find the blocks to experiment with cloning in the Control part of the Blocks Palette.

- **More Blocks:** Scratch 2 enables you to build your own blocks by combining existing blocks. It’s a great way to make programs that are easier to read. Click the More Blocks button above the Blocks Palette to try it.

- **Data:** The Variables part of the Blocks Palette has been renamed to Data in Scratch 2. It is otherwise the same. We cover variables in Chapter 10.

Despite these differences, you should find that programs written for the original Scratch will work in Scratch 2, so you can use tutorials and books based on them. For more guidance on Scratch 2, see our recommended resources at the end of Chapter 10.
Index

Symbols and Numerics

` (apostrophe), 105
* (asterisk) operator, 105, 109, 211
\ (backslash), 105
: (colon), 268, 271
{ (curly braces), 105, 230
. (current directory), 110, 111
$ (dollar sign), 88
&& (double ampersand), 116
== (double equal sign), 228
// (double slash) operator, 211
(hash mark), 213, 450, 451
- (hyphen) operator, 88, 97, 100–101, 105, 211
... (parent directory), 90–91, 110, 111
% (percent) operator, 211
| (pipe) character, 121
+ (plus) operator, 211
? (question mark) wildcard, 105, 109
" (quotation (speech) marks), 105
<< (shift operator), 366
/ (slash) operator, 105, 211
[] (square brackets), 105, 245
~ (tilde) symbol, 90–91, 94–95
13.56 MHz tags, 390
125-135 KHz tags, 390

A

absolute paths, 94–96
AC (alternating current), 302
accepting user input, 216
accessing
 bookmarks, 77
 Scratch, 165
accessories, 16–21
Acorn, 47
active tags, 390
actors, animating, 245–247

Adafruit (website), 15, 325
adapting
 appearance of sprites in Scratch, 172–176
 audiobook, 438
 background in Scratch, 185
 colors in GIMP, 145
desktop wallpaper, 60
directories in Linux Shell, 89
displays for files, 72–73
game speed, 204
parent directory in Linux Shell, 90–91
perspective in Minecraft, 258
screen display, 452–454
sensitivity of keyboard/mouse, 83
settings, 448–454
settings in media center, 157–158
sprite visibility in Scratch, 176
Add Tab (File Manager), 68
adding
 blocks in Minecraft, 263–264
 bookmarks, 67, 76–77
 ceilings in Minecraft, 274
 clouds, 248–250
 media to media center, 151–155
 music, 152–153
 music in Scratch, 176–178
 pictures, 154
 scripts to Stage, 203
 sounds in Scratch, 176–178
 special effects in Sonic Pi, 292
 sprites to games, 185–186
 timers, 253
 users, 119
 videos, 153–154
add-ons, 155
additive mixing, 359
addressable LEDs, 362–365
adjusting
appearance of sprites in Scratch, 172–176
audiobook, 438
background in Scratch, 185
colors in GIMP, 145
desktop wallpaper, 60
directories in Linux Shell, 89
displays for files, 72–73
game difficulty, 253–254
game speed, 204
parent directory in Linux Shell, 90–91
perspective in Minecraft, 258
random number seed, 287–288
screen display, 452–454
sensitivity of keyboard/mouse, 83
settings, 448–454
settings in media center, 157–158
sprite visibility in Scratch, 176
advanced listing options, 96–99
advanced settings, 454
Akerman, Dave (developer), 9, 441
altering
appearance of sprites in Scratch, 172–176
audiobook, 438
background in Scratch, 185
colors in GIMP, 145
desktop wallpaper, 60
directories in Linux Shell, 89
displays for files, 72–73
game speed, 204
parent directory in Linux Shell, 90–91
perspective in Minecraft, 258
random number seed, 287–288
screen display, 452–454
sensitivity of keyboard/mouse, 83
settings, 448–454
settings in media center, 157–158
sprite visibility in Scratch, 176
advanced listing options, 96–99
advanced settings, 454
Akerman, Dave (developer), 9, 441
alternating current (AC), 302
animate() function, 246
animating actors, 245–247
anode, 302
APA102C protocol
about, 362–365
bit-banging, 365–366
apostrophe ('), 105
appearance, changing of sprites in Scratch, 172–176
append() function, 224, 271
applications, finding and installing, 83–84
Applications folder, 27
Applications menu, 60–63
apropos command, 121
apt, 116
apt–cache, 115
apt–get, 121
arcade game, programming
about, 183–184, 205
adding scripts to Stage, 203
adding sprites, 185–186
adjusting game speed, 204
changing background, 185
controlling scripts, 190–195
deleting sprites, 184–185
detecting when sprites hit, 196–197
drawing sprites, 186–189
duplicating sprites, 203
fixing bugs, 201–203
making sprites move automatically, 199–200
naming sprites, 189
playing game, 204
starting new project, 184–185
using random numbers, 195–196
variables, 197–199
arguments, 226
ARM processor, 14
asterisk (*) operator, 105, 109, 211
Audacity, 411
audio. See also media center
about, 149
connecting, 44–45
fixing problems, 454–455
audio socket, 45
audiobook player, 437–438
[a-z] wildcard, 109
B
background, changing in Scratch, 185
backing up data, 84–85
backpowering, 21
backslash (\), 105
ball grid array (BGA) package, 308
battery power, 46
BCM2835, 308
Beech, Paul (designer), 19
Beneath a Steel Sky, 434–435
BGA (ball grid array) package, 308
bin directory, 92
binary number, 347
bit-banging
 about, 365
 APA102C protocol, 365–366
Blinkt! board, 380
blocks
 adding in Minecraft, 263–264
 breaking in Minecraft, 259–260
 creating music with, 176–178
 positioning in Minecraft, 259
 in Scratch, 165–166
 in Scratch 2, 181
Blocks Palette (Scratch), 165–166, 173, 201
Bluetooth devices, configuring, 54
bookmarks, 67, 76–77
boot directory, 92
Brain party, 436
breaking blocks in Minecraft, 249–260
Brightness and Contrast settings (GIMP), 145
Brightness effect (Scratch), 175
Broadcast block, 193–194
Broadcom BCM2835 chip, 14
browsing, web
 about, 74
 bookmarks, 76–77
 privacy, 77–78
 searching within web pages, 76
 tabbed browsing, 76
Bryan, David (developer), 439–440
bugs, fixing, 201–203
building
 chatbot program, 221–238
 classes, 366–370
 colors, 359–362
 computer-controlled dice, 337–347
dictionary look-up function, 231–236
directories in Linux Shell, 106
files using redirection in Linux Shell, 104–105
folders, 71
functions in Minecraft, 270–271
graphics, 413–423
invitations in LibreOffice Draw, 136–138
main conversation loop, 236
main loop in Minecraft, 271–274
NOOBS card, 25–32
presentations in LibreOffice Impress, 134–136
programs, 241–255
scripts in Scratch, 178–179
sound samples, 411–413
times tables program, 212–221
variables, 197
bytes, 342

C
cables
 about, 20
 replacing, 447
cache, updating, 114
cal command, 104
calculating
 circuit values, 306
 sums with Python Shell, 210–212
calling functions, 236
canceling Linux commands, 102
Canvas (Scratch), 188
case, 19–20
case-sensitivity
 of Linux, 89
 of Python, 10, 261
Cat sprite, 184
cathode, 302
cd directory, 89, 90–91
ceilings, adding in Minecraft, 274
cellsVisitedList[] variable, 269
changeover switch, 303
changing
appearance of sprites in Scratch, 172–176
audiobook, 438
background in Scratch, 185
colors in GIMP, 145
desktop wallpaper, 60
directories in Linux Shell, 89
displays for files, 72–73
game difficulty, 253–254
game speed, 204
parent directory in Linux Shell, 90–91
perspective in Minecraft, 258
random number seed, 287–288
screen display, 452–454
sensitivity of keyboard/mouse, 83
settings, 448–454
settings in media center, 157–158
sprite visibility in Scratch, 176
Chapellier, Cyril (developer), 443
chatbot program
about, 221–222, 236–237
adding while loop, 227–228
creating dictionary look-up function, 231–236
creating main conversation loop, 236
dictionaries, 229–231
final listing, 237–238
forcing replies from players, 228–229
lists, 222–227
Cheat Sheet (website), 4
checking
connections, 446
file types in Linux Shell, 89–90
MicroSD card, 447
SD card, 447
what's installed, 118
checkRequest function, 355
chgrp command, 101
chmod command, 101
choose() method, 289
choosing
files/folders, 70, 108–110
multiple files using wildcards, 108–110
chord names, using, 285–286
Chromium, web browsing with, 74–76
circuits
about, 299–300
components, 307–308
connecting together, 326–327
creating computer-controlled dice, 337–347
electricity, 300–306
GPIO, 308–317
Pedestrian Crossing project, 347–356
ready-made add-on boards, 317–320
testing with simulators, 307
your first, 327–337
classes, creating, 366–370
Claws Mail, 61, 78
Clear button (Scratch), 188
Clemens, Michael (developer), 438
clock signal, 365
Clone tool (GIMP), 146–147
cloning, in Scratch 2, 181
closing program windows, 63–64
Cloudbursting game
adding clouds, 248–250
adding timer, 253
adjusting difficulty, 253–254
animating actors, 245–247
collecting sounds and images, 240–241
creating programs, 241–255
detecting mouse clicks, 244–245
enabling multiple clouds to be clicked, 251–252
final listing, 254–255
regenerating clouds, 250–251
running programs, 241–255
setting up folders, 241
using random numbers, 247–248
clouds
adding, 248–250
enabling multiples to be clicked, 251–252
regenerating, 250–251
collidepoint() function, 245
colon (:), 268, 271
Color effect (Scratch), 175
Color Palette (Scratch), 175
colors
adjusting in GIMP, 145
creating, 359–362
Colour Balance settings (GIMP), 145
columns, resizing in LibreOffice Calc, 133
commands
 apropos, 121
cal, 104
chgrp, 101
chmod, 101
cp, 111–113
date, 104
echo, 104, 122
else, 236
entering, 103
file, 89–90, 110
groups, 118
input, 220
less, 102–103, 121
Less, 102–103
license(), 209
Linux, 102, 120–124
ls, 97–99
mc.player.getTilePos(), 279
mkdir, 106, 107, 121
passwd, 120
pidel, 123
ping, 457
Python, 208–210
rm, 107
rmdir, 110
sleep, 284, 291–292
sync, 293
type, 120
useradd, 119
which, 120
while, 229
commas, in Sonic Pi, 216
common ground/reference, 310
compatible devices, 21
components, of circuits, 307–308
composing random tunes using shuffle method, 287
composite video socket, 42–43
Compute Model, 14
computer-controlled dice, creating, 337–347
conditional statement, 235
cfg.txt file, opening, 449
configuring
 Bluetooth devices, 54
 Raspberry Pi in Raspbian, 50–53
 Wi-Fi, 53
connecting
 about, 35–37
 audio, 44–45
 checking connections, 446
 configuring Wi-Fi, 53
inserting SD card, 37–39
keyboard, 44
logging in, 50
monitor, 41–43
mouse, 44
power, 46–50
Raspberry Pi Camera Module, 39–41
router, 45–46
testing Raspberry Pi Camera Module, 54–55
TV, 41–43
USB hub, 43–44
using SSH, 458
Control block, 190–191
controlling
 scripts, 190–195
 software, 113–118
 user accounts, 118–120
conventional current, 302
conversation loop, creating, 236
converter chips, 381
converting images between formats in GIMP, 147
Cool Scratch projects in Easy Steps (McManus), 205
countdown() function, 253
Cox, Simon (professor), 9
cmp command, 111–113
creating
chatbot program, 221–238
classes, 366–370
colors, 359–362
computer-controlled dice, 337–347
dictionary look-up function, 231–236
directories in Linux Shell, 106
files using redirection in Linux Shell, 104–105
files/folders, 71
functions in Minecraft, 270–271
graphics, 413–423
invitations in LibreOffice Draw, 136–138
main conversation loop, 236
main loop in Minecraft, 271–274
NOOBS card, 25–32
presentations in LibreOffice Impress, 134–136
programs, 241–255
scripts in Scratch, 178–179
sound samples, 411–413
times tables program, 212–221
variables, 197
cropping photos in GIMP, 144–145
Ctrl key, 71, 76, 123, 145, 450
curly braces ({}), 105, 230
currency sign, showing in LibreOffice Calc, 133
current
defined, 300
value of, 3103
current directory (.), 110, 111
current sourcing, 311
customizing
desktop environment, 82–83
with Linux commands, 122–124
cutting files, 69
data
backing up, 84–85
in Scratch 2, 181
data label, 56
data loss, avoiding, 39
data partition, setting up, 56
Data partition option (NOOBS Lite), 48
data sheet, 307
data word, 366
date command, 104
DC (direct current), 302
Debian Reference icon, 61
defbounce time, 336
def statement, 231–232, 368
Delete button (Image Viewer), 81
deleting
directories in Linux Shell, 110–111
files and folders, 71
files in Linux Shell, 107–108
software, 117
sprites in Scratch, 184–185
demolish() function, 270
dependencies, 115, 456
depth-first maze generation algorithm, 270
desktop environment
about, 59–60
Applications menu, 60–63
changing displays for files, 72–73
closing program windows, 63–64
copying files/folders, 69
creating files/folders, 71
creating folders, 71
customizing, 82–83
File Manager, 65–73
icons, 59–60
Image Viewer, 79–81
Leafpad Text Editor, 81–82
moving files/folders, 69
navigating, 60–64
opening folders as root or in terminal, 73
playing music in, 158–159
Programs menu, 63
resizing program windows, 63–64
selecting files/folders, 70
starting, 59
Task Manager, 64–65
using external storage devices in, 67
web browsing, 74–78
Desktop folder, 67
desktop wallpaper, changing, 60
detailed list view (File Manager), 72
detecting
 mouse clicks, 244–245
 when sprites are hit, 196–197
dev directory, 92
devices, Bluetooth, 54
DHCP (Dynamic Host Configuration Protocol),
 46, 457
dictionaries, 229–231, 231–236
dictionarycheck() function, 232, 233, 236
diffusers, 359–360
Dillo browser, 74
diode, 301
direct current (DC), 302
directions, moving sprites in Scratch with, 168–170
directories
 changing in Linux Shell, 89
 creating in Linux Shell, 106
 listing, 88–89
 removing in Linux Shell, 110–111
directory tree, 91–93
disconnecting peripherals, 447
display socket, 41–42
displaying
 currency sign in LibreOffice Calc, 133
 sprite information on Stage, 172
displayRo11 function, 346
displays, changing for files, 72–73
distribution (distros), 24
documents, saving as PDF, 131
dollar sign ($), 88
DotStar, 362–365
double ampersand (&&), 116
double equal sign (==), 228
double slash (/) operator, 211
double-throw switch, 303
downloading
 NOOBS, 25
 operating system, 23–33
draw() function, 243, 246, 250, 251, 252
drawing sprites in Scratch, 186–189
drumbeat, synchronizing with in Sonic Pi, 293
Dtronixs (website), 325
Dummies (website), 4
duplicate copy, 69
duplicating sprites, 203

DVI display, 42
Dynamic Host Configuration Protocol (DHCP), 46, 457

E
Easel icon, 204
eBay (website), 19
echo command, 104, 122
dependence detection, 378
Edit menu (Leafpad Text Editor), 81
editing photos. See GIMP
egg box, 360
Electric Skateboard project, 439
electricity, nature of, 300–306
Element14 (website), 15
Ellipse tool (Scratch), 187
eIse command, 236
eIse statement, 274
email, sending and receiving with Claws Mail, 78
embedded system, 308
enabling
 HDMI safe mode, 451
 keyboard control, 192–193
 multiple clouds to be clicked, 251–252
 sprites to control sprites, 193–195
enroll function, 399
entering
 commands, 103
 Python commands, 208–210
environmental regulations, 315
Epiphany browser, 74
equivalent circuit, 306
Escape tool (Scratch), 187
escape sequence, 217
cetc directory, 92
Ethernet connection, 457
Ethernet socket, 45
Events block, in Scratch 2, 181
execute permission, 101
Exit Image Viewer button (Image Viewer), 81
external storage devices
 about, 18
 mounting, 455–456
 using in desktop environment, 67
Eyedropper tool (Scratch), 188
Farnell, 319
Fernandez, David (website), 439
file command, 89–90, 110
File Manager
about, 65–66
changing file displays, 72–73
copying files/folders, 69
creating blank files, 71
creating folders, 71
moving files/folders, 69
navigating, 66–69
opening folders as roots or in terminals, 73
selecting files/folders, 70
File menu, 128, 131
File menu (Leafpad Text Editor), 81
FileName function, 400
files and folders
bookmarking, 67
changing displays for, 72–73
checking types in Linux Shell, 89–90
copying, 69, 111–113
copying in Linux Shell, 111–113
creating, 71, 104–105
creating using redirection in Linux Shell, 104–105
cutting, 69
defined, 65
deleting, 71, 107–108
deleting in Linux Shell, 107–108
listing, 88–89
moving, 69
naming, 105
opening, 65, 73
opening as root or in terminal, 73
renaming in Linux Shell, 111–113
selecting, 70, 108–110
selecting using wildcards, 108–110
setting up, 241
Fill tool (Scratch), 187
finding
applications, 83–84
package name, 114–115
firing mechanism, 193–195
firingflag variable, 201
Fisheye effect (Scratch), 175
Fit Image to Window button (Image Viewer), 79
fixing
bugs, 201–203
software installation issues, 456
flags, 201
Flash, 74
flashing SD cards, 32–33
Flip Horizontally button (Image Viewer), 80
Flip Vertically button (Image Viewer), 80
flipping photos in GIMP, 145
flux, 314–315
FocusWriter, 429
Folder History (File Manager), 69
folders and files
bookmarking, 67
changing displays for, 72–73
checking types in Linux Shell, 89–90
copying, 69, 111–113
copying in Linux Shell, 111–113
creating, 71, 104–105
creating using redirection in Linux Shell, 104–105
cutting, 69
defined, 65
deleting, 71, 107–108
deleting in Linux Shell, 107–108
listing, 88–89
moving, 69
naming, 105
opening, 65, 73
opening as root or in terminal, 73
renaming in Linux Shell, 111–113
selecting, 70, 108–110
selecting using wildcards, 108–110
setting up, 241
Fontwork text, 138
footer, 366
for loop, 218–221
for statement, 268
Forever block, 191–192
format, long listing, 99–102
Format menu (LibreOffice Writer), 131

formatting

MicroSD card, 26–30

presentations in LibreOffice Impress, 134–136

SD card, 26–30

foundations, laying in Minecraft, 266–267

Fraqrive, 431–432

free software, 24

freeing up space, 117

Full Screen button (Image Viewer), 79

functions

animate(), 246

append(), 224, 271
calling, 236

checkRequest, 355
collidepoint(), 245
countdown(), 253
creating in Minecraft, 270–271
demolish(), 270
dictionarycheck(), 232, 233, 236
displayRoll, 346
draw(), 243, 246, 250, 251, 252
enroll, 399
FileName, 400
getString, 400
hideMaker(), 270
input(), 216, 226, 229
len(), 223
main, 345, 350, 378
pattern, 387
pause, 337
randCol, 388
random.randint(), 226, 247
range(), 219, 220
realx(), 270
realz(), 270
rrand_i(), 289
screen.draw.text(), 250
showMaker(), 270
str(), 249
testAllWalls(), 270, 271
time.sleep(), 348
update(), 251

G

games, playing, 204

General Purpose Input/Output (GPIO) pins

about, 308–309

on Raspberry Pi, 321–327

soldering, 314–316

soldering onto Pi Zero, 323–324

uses for, 309

using as inputs, 313–314

using output pins, 311–313

what they do, 309–311

generating

chatbot program, 221–238
dictionary look-up function, 231–236
directories in Linux Shell, 106

files using redirection in Linux Shell, 104–105

files/folders, 71

folders, 71

functions in Minecraft, 270–271

invitations in LibreOffice Draw, 136–138

main conversation loop, 236

main loop in Minecraft, 271–274

NOOBS card, 25–32

presentations in LibreOffice Impress, 134–136

scripts in Scratch, 178–179

times tables program, 212–221

variables, 197

getString function, 400

Ghost effect (Scratch), 175

GIMP (GNU Image Manipulation Program)

about, 139–140

adjusting colors, 145

converting images between formats, 147

cropping photos, 144–145

flipping photos, 145

installing, 140

repairing photos, 146–147

resizing images, 142–144

rotating photos, 145

screen layout, 140–142

starting, 140

website, 147
Glide block, 195
global variables, 252
GNU Image Manipulation Program (GIMP)
 about, 139–140
 adjusting colors, 145
 converting images between formats, 147
 cropping photos, 144–145
 flipping photos, 145
 installing, 140
 repairing photos, 146–147
 resizing images, 142–144
 rotating photos, 145
 screen layout, 140–142
 starting, 140
 website, 147
GNU Project, 24
GNU/Linux. See Linux
Go to Original Size button (Image Viewer), 79
GParted, 26
GPIO (General Purpose Input/Output) pins
 about, 308–309
 on Raspberry Pi, 321–327
 soldering, 314–316
 soldering onto Pi Zero, 323–324
 uses for, 309
 using as inputs, 313–314
 using output pins, 311–313
 what they do, 309–311
GPIO Zero, creating LED flash using, 334–337
graphic effects (Scratch), 175
graphics, creating, 413–423
green flag, 190–191
grid coordinates, moving sprites in Scratch with, 170–172
Grisbi, 433
groups command, 118

H
hard drive, external, 18
hash mark (#), 213, 450, 451
HAT board, 317–319
HDMI (high definition multimedia interface), 16
HDMI cable, 42
HDMI CEC (Consumer Electronics Council)
 standard, 158
HDMI converter, 41
HDMI display, 42
HDMI safe mode, enabling, 451
Heart Rate Monitor project, 439
help facility, 121
Hide block (Scratch), 176
hideMaker() function, 270
high definition multimedia interface (HDMI), 16
#highaltitudechannel (website), 442
History pane (GIMP), 141–142
Home (File Manager), 69
home directory, 92
hyphen (-) operator, 88, 97, 100–101, 105, 211

I
icon bar (File Manager), 68–69
icons
 desktop, 50–60
 Easel, 204
 explained, 3–4
 IDLE 3, 260
 scissors, 184
IDE (integrated development environment), 208
IDLE (Python IDE), 208, 223, 260
IDLE 3 icon, 260
If block, 194
if statement, 274, 330, 375
image files, in LibreOffice Impress, 135
Image Viewer, using, 79–81
incompatible devices, 21
indentations, 220
index number, 229
info page, 122
input command, 220
input() function, 216, 226, 229
input/output pins, 309
inputs, using GPOPs as, 313–314
Insert menu (LibreOffice Writer), 131
inserting
 MicroSD card, 37–39
 SD card, 37–39
installing
 applications, 83–84
 Beneath a Steel Sky, 434
 FocusWriter, 429
 Fraqrive, 431
 GIMP, 140
 Grisbi, 433
 LibreOffice, 128
 multiple operating systems, 49
 Penguins Puzzle, 428
 software, 113–118, 115
 Tux Paint, 432
 XInvaders 3D, 431
integrated development environment (IDE), 208
Internet connection, troubleshooting, 446
Internet resources
 Adafruit, 15, 325
 advanced settings, 454
 Akerman, Dave, 9, 442
 Bryan, David, 439
 Cheat Sheet, 4
 Clemens, Michael, 437
 compatible devices, 21
 Dtronixs, 325
 Dummies, 4
 eBay, 19
 Electric Skateboard project, 439
 Element14, 15
 Fernandez, David, 439
 FocusWriter, 429
 GIMP (GNU Image Manipulation Program), 147
 HAT boards, 317
 #highaltitudechannel, 442
 incompatible devices, 21
 LibreOffice, 128
 Minecraft Wiki, 263
 online help, 448
 photobooth, 440
 Pi Hut, 15
 PiBow, 19
 Pimoroni, 15
 Pope, Daniel (blog), 256
 Pygame Zero built-in objects list, 256
 Pygame Zero documentation, 256
 Raspberry Pi, 25, 156
 Raspberry Pi Camera Module, 54–55
 RS Components, 15
 Scratch, 205
 SD cards, 447
 SDFormatter, 26
 simulator, 307
 Tux Paint, 433
 UK High Altitude Society, 442
 updates, 4
 Wardell, Steve, 438
 Way Out West Hackathon, 440

J
 Jackson, Michael (singer), 179
 Jukebox project, 395–400
 jumper wires, 326

K
 Keepy Uppy, 375–378
 key, USB, 18
 keyboard
 adjusting sensitivity, 83
 connecting, 44
 enabling control of, 192–193
 USB, 17
 keyboard shortcuts, 70
 Kodi system, 150

L
 Lakka option (NOOBS Lite), 48
 Layers pane (GIMP), 141–142
 Leafpad Text Editor, 81–82
 leapsize variable, 199–200, 203
 LED flash
 about, 327–328
 controlling flashing speed, 329–331
 using GPIO Zero, 334–337
 using Python, 331–334
 using Scratch 1.4, 328–329
 LED matrix, 382–388
 LED strips, 382
LEDs (light-emitting diodes)
about, 311–312, 378
current limits, 379
display update, 381
getting more, 381–388
memory, 379–380
signals, 379–380
len() function, 223
less command, 102–103, 121
Less command, 102–103
lib directory, 92
LibreELEC, 150
LibreELEC option (NOOBS Lite), 47
LibreOffice icon, 62
about, 127
installing, 128
LibreOffice Calc, 131–134
LibreOffice Draw, 136–138
LibreOffice Impress, 134–136
LibreOffice Math, 129
LibreOffice Writer, 129–131
saving work in, 129
starting, 128–129
website, 128
license() command, 209
light-emitting diodes (LEDs)
about, 311–312, 378
current limits, 379
display update, 381
getting more, 381–388
memory, 379–380
signals, 379–380
Lightweight X11 Desktop Environment (LXDE), 59
line drawing, 382–388
Line tool (Scratch), 187
Linux
about, 14, 24
copying NOOBS to SD or MicroSD cards, 30–32
SD cards and, 28–30
Linux commands
about, 120–122
canceling, 102
customizing with, 122–124
Linux Foundation, 24
Linux Shell
about, 87
absolute paths, 94–96
advanced listing options, 96–99
calculating sums with, 210–212
changing directories, 89
changing parent directory, 90–91
checking file types, 89–90
copying files, 111–113
creating directories, 106
creating files using redirection, 104–105
customizing with Linux commands, 122–124
deleting files, 107–108
directory tree, 91–93
entering commands, 103
installing software, 113–118
Less command, 102–103
Linux commands, 120–122
listing files/directories, 88–89
long listing format and permissions, 99–102
managing software, 113–118
managing user accounts, 118–120
naming files, 105
prompt, 88
rebooting, 124
relative paths, 94–96
removing directories, 110–111
renaming files, 111–113
selecting multiple files using wildcards, 108–110
shutting down, 124
list names, using in programs, 288
listing files/directories, 88–89
lists
about, 222–225
creating random chat program using, 225–227
setting up in Minecraft, 269–270
Lite version (NOOBS), 46
live loops, 289–291
local variable, 252
Log, 289
logging in, 50
logging out, from PIXEL, 85
logic levels, 310
long listing, format and permissions, 99–102
Looks button (Scratch), 173–174
loops
 creating Minecraft, 271–274
defined, 212
lost+found directory, 92
ls command, 97–99
LXDE (Lightweight X11 Desktop Environment), 59

M
mA (milliamps), 306
Mac
 copying NOOBS to SD or MicroSD cards, 30
 SDFormatter software, 27–28
Mac Mini, 441
Magic Mirror project, 440–441
main function, 345, 350, 378
making
 chatbot program, 221–238
dictionary look-up function, 231–236
directories in Linux Shell, 106
files using redirection in Linux Shell, 104–105
files/folders, 71
colders, 71
functions in Minecraft, 270–271
invitations in LibreOffice Draw, 136–138
main conversation loop, 236
main loop in Minecraft, 271–274
NOOBS card, 25–32
presentations in LibreOffice Impress, 134–136
scripts in Scratch, 178–179
times tables program, 212–221
variables, 197
managing
 scripts, 190–195
 software, 113–118
 user accounts, 118–120
Mathematica, 429–431
Mathematica icon, 62
Maximize button, 63
maze algorithm (Minecraft), 268–269
maze parameters, setting in Minecraft, 265–266
maze walls, placing in Minecraft, 267–268
McManus, Sean (author)
 Cool Scratch projects in Easy Steps, 205
 Mission Python, 256
 Scratch Programming in Easy Steps, 205
mc.player.getTilePos() command, 279
Mechanical Turk, 442
media center
 adding media, 151–155
 adding music, 152–153
 adding pictures, 154
 adding to media center, 151–155
 adding videos, 153–154
 changing settings, 157–158
 navigating, 150–151
 playing music, 155–156
 playing music in desktop environment, 158–159
 playing videos, 156–157
 remote control, 158
 setting up, 149–150
 streaming media, 155
 turning off, 158
 viewing photos, 157
media directory, 92
memory, 379–380
menu bar
 File Manager, 67
 GIMP, 141
 media center, 150–151
Micro USB socket, 41
MicroSD card
 about, 17
 checking, 447
 copying NOOBS to, 30–32
 formatting, 26–30
 inserting, 37–39
 replacing, 447
MicroSD card writer, 17
Microsoft Excel. See LibreOffice, LibreOffice Calc
MIDI note numbers, 283–284
MIFARE card, 393–395
milliamps (mA), 306
Minecraft
 breaking blocks, 259–260
 changing perspective in, 258
 minecraft module, 261–278
 moving around in, 258–259
 playing, 258–260
 preparing for Python, 260
 starting, 258
Minecraft Maze Maker code, 275–278
minecraft module
 about, 261
 adding blocks, 263–264
 adding ceilings, 274
 coordinates, 261–262
 creating functions, 270–271
 creating main loop, 271–274
 laying foundations, 266–267
 maze algorithm, 268–269
 placing maze walls, 267–268
 positioning players, 274
 repositioning players, 262–263
 setting maze parameters, 265–266
 setting up variables and lists, 269–270
 stopping players from changing world, 264–265
Minecraft Pi
 about, 257–258
 icon, 62
minecraft.Minecraft.create(), 261
Mini HDMI socket, 41
Minimize button, 64
Mission Python (McManus), 256
mkdir command, 106, 107, 121
mnt directory, 93
Model 2, inserting SD cards in, 37–39
Model A+
 about, 12, 36
 inserting SD cards in, 37–39
 network connections, 45
Model B
 about, 12, 13, 36
 audio socket, 45
 Ethernet socket, 46
 inserting SD cards in, 37–39
Model B+, 13
 about, 36
 audio socket, 45
 inserting SD cards in, 37–39
Model Zero
 about, 12
 Ethernet socket, 46
 inserting SD cards in, 38–39
 network connections, 45
 soldering GPIO pins onto, 323–324
Model Zero W
 about, 12, 37
 connecting camera on, 39
 inserting SD cards in, 38–39
modifying
 appearance of sprites in Scratch, 172–176
 audiobook, 438
 background in Scratch, 185
 colors in GIMP, 145
 desktop wallpaper, 60
 directories in Linux Shell, 89
 displays for files, 72–73
 game speed, 204
 parent directory in Linux Shell, 90–91
 perspective in Minecraft, 258
 screen display, 452–454
 sensitivity of keyboard/mouse, 83
 settings, 448–454
 settings in media center, 157–158
 sprite visibility in Scratch, 176
modules, 226
monitor
 about, 16
 connecting, 41–43
 Mosaic effect (Scratch), 175
Motion block, 196
mounting external storage devices, 455–456
mouse
 adjusting sensitivity, 83
 connecting, 44
 USB, 17
mouse clicks, detecting, 244–245
moving
 around in Minecraft, 258–259
 files/folders, 69
 sprites automatically, 199–200
 sprites in Scratch, 167–172
MPEG2 format, 156
music. See also Sonic Pi
 adding, 152–153
 adding in Scratch, 176–178
 composing using shuffle method, 287
 playing in desktop environment, 158–159
 playing in media center, 155–156
N
naming
 files, 105
 sprites, 189
Nano text editor, 449–451
navigating
 desktop environment, 60–64
 File Manager, 66–69
 media center, 150–151
negative, 302
NeoPixels, 362–365
Netsurf browser, 74
network connection, troubleshooting, 457
networked media, adding to media center, 151–155
New Bookmark window, 76
new-out-of-box software. See NOOBS
Next button (Image Viewer), 79
Next Folder (File Manager), 69
nonlinear device, 307
NOOBS
 copying to SD or MicroSD card, 30–32
 downloading, 25
 Lite version, 46
NOOBS card
 creating, 25–32
 using, 32
NOOBSLite, 49
Normalize option (GIMP), 145
note names (Sonic Pi), 285–286
note numbers (Scratch), 176–178
notes, playing in Sonic Pi, 283–285, 288–289
numberOfCells variable, 269
numberOfVisitedCells variable, 269
numbers, printing, 216–218
O
ODF Text Document (.odt), 130
offline and network install version, of
 NOOBS, 25
.ogg sound format, 240
ohms, 300
Old McDonald’s Farm, 410–423
13.56 MHz tags, 390
125-135 KHz tags, 390
One-Button Audiobook Player project,
 437–438
online help, 448
on/off switch, 46
Open File button (Image Viewer), 80
opening
 config.txt file, 449
 folders, 65
 folders as root or in terminal, 73
operating system
 about, 23
 creating NOOBS card, 25–32
 installing multiple, 49
 Linux, 24
 using NOOBS card, 32
opt. directory, 93
options, for lss command, 98–99
Options menu (Leafpad Text Editor), 82
OSMC option (NOOBS Lite), 47
output impedance, 307
outputs, using GPIO pins as, 311–313
overclocking, 52
package manager, 113
package name, finding, 114–115
Paint Editor (Scratch), 186–189
Paintbrush tool (Scratch), 187
panes (GIMP), 141–142
Panflute Hero project, 440
paper dolls, 401–410
parent directory (. . .), 90–91, 110, 111
passive tags, 390
passwd command, 120
Path (File Manager), 69
pattern function, 387
pause function, 337
PDF, saving documents as, 131
Pedestrian Crossing project, 347–356
Penguins Puzzle, 428
Pennec, Mélanie (developer), 443
percent (%) operator, 211
peripherals, 447
permissions, long listing, 99–102
perspective, in Minecraft, 258
photo editing. See GIMP
photobooth, 440–441
Photobot.Co, 440–441
photos
 converting between formats in GIMP, 147
 cropping in GIMP, 144–145
 flipping in GIMP, 145
 repairing in GIMP, 146–147
 rotating in GIMP, 145
 viewing in media center, 157
physical computing, 299
pi, 88
pi folder, 67
Pi Hut (website), 15
Pi in the Sky project, 441–442
Pi Model 2, inserting SD cards in, 37–39
Pi Model A
 about, 13, 36
 inserting SD cards in, 37–39
 network connections, 45
Pi Model A+
 about, 12, 36
 inserting SD cards in, 37–39
 network connections, 45
Pi Model B
 about, 12, 13, 36
 audio socket, 45
 Ethernet socket, 46
 inserting SD cards in, 37–39
Pi Model B+, 13
 about, 36
 audio socket, 45
 inserting SD cards in, 37–39
Pi Model Zero
 about, 12
 Ethernet socket, 46
 inserting SD cards in, 38–39
 network connections, 45
 soldering GPIO pins onto, 323–324
Pi Model Zero W
 about, 12, 37
 connecting camera on, 39
 inserting SD cards in, 38–39
Pibow (website), 19
pictures, adding, 154
pidel command, 123
Pimoroni (website), 15
ping command, 457
pipe (|) character, 121
PIXEL
 about, 59–60
 logging out from, 85
Pixelate effect (Scratch), 175
players
 forcing replies from, 228–229
 positioning in Minecraft, 274
 repositioning in Minecraft, 262–263
 stopping form changing world in Minecraft, 264–265
playerx variable, 269
playerz variable, 269
playing
 games, 204
Minecraft, 258–260
music in desktop environment, 158–159
music in media center, 155–156
notes in Sonic Pi, 283–285
random notes in Sonic Pi, 288–289
videos in media center, 156–157
playlists, 156
plus (+) operator, 211
Polar H7 heartbeat sensor, 439
pop() method, 23
Pope, Daniel (developer), 239
blog, 256
positioning
blocks in Minecraft, 259
players in Minecraft, 274
sprites in Scratch, 166–167
positive, 302
power supply
about, 19
connecting, 46–50
replacing, 448
Preferences button (Image Viewer), 81
presentations. See LibreOffice, LibreOffice Impress
Previous button (Image Viewer), 79
Previous Folder (File Manager), 68–69
printing words, variables, and numbers, 216–218
privacy, protecting, 77–78
proc directory, 93
programming. See also Scratch
about, 164
arcade game. See arcade game, programming
Minecraft with Python. See Minecraft in Python. See Python
programs. See also specific programs
creating, 241–255
running, 63, 213–214, 241–255
stopping, 64–65
using list names in, 288
writing in Sonic Pi, 286
Programs menu, 63
projects, 437–443. See also specific projects
prompt (Linux Shell), 88
protecting privacy, 77–78
protocols, 283
pull-up/down, 314
Pulse-Worfdth Modulation (PWM), 360–361
punctuation, 230
PWM (Pulse-Worfdth Modulation), 360–361
Pygame/Pygame Zero, 239–240. See also Cloudbusting game
Python. See also Cloudbusting game
about, 207–208
calculating sums with Shell, 210–212
creating chatbot program, 221–238
creating LED flash using, 331–334
creating times table program, 212–221
entering commands, 208–210
Minecraft. See Minecraft
starting Python, 207–208
Python games icon, 62
Python icons, 62
Q
quality (image), 144
question mark (?) wildcard, 105, 109
quotation (speech) marks ("), 105
quotes, in Python, 223
R
Radio Frequency IDentification card (RFID)
about, 389
how it works, 390–401
Old McDonald's Farm, 410–423
dollars, 401–410
Rainbow Invaders, 370–375
randCol function, 388
random module, 261
random number seed, adjusting, 287–288
random numbers
using in arcade game programming, 195–196
using in Cloudbuster game, 247–248
random.randint() function, 226, 247
range() function, 219, 220
Raspberry Pi. See also specific topics
about, 9–11
accessories for, 16–21
getting, 15
GPIO, 321–327
projects. See specific projects
troubleshooting, 446–448
turning on, 46–50
upgrading software on, 116–117
uses for, 14–15
versions, 11–14
website, 25, 156
Raspberry Pi Camera Module
about, 18
connecting, 39–41
testing, 54–55
Raspberry Turk project, 442–443
raspberrypi, 88
Raspbian, 25
configuring Raspberry Pi in, 50–53
Raspbian option (NOOBS Lite), 47
Raspi-config, 448–449
raspistill, 54–55
raspivid, 55
RCA cable, 43
read permission, 101
ready-made add-on boards, 317–320
realx() function, 270
realz() function, 270
rebooting, 124
Recalbox option (NOOBS Lite), 48
receiving email with Claws Mail, 78
Rectangle tool (Scratch), 187
redirection, creating files using, 104–105
Redon, Eric (developer), 443
Reduction of Hazardous Substances (RoHS), 315
regenerating clouds, 250–251
relative paths, 94–96
Reload button, 75
Remember icon, 4
remote control, 43, 158
removing
directories in Linux Shell, 110–111
files in Linux Shell, 107–108
software, 117
sprites in Scratch, 184–185
renaming files in Linux Shell, 111–113
repairing photos in GIMP, 146–147
replacing
cables, 447
MicroSD card, 447
peripherals, 447
power supply, 448
screen, 447
SD card, 447
repositioning players in Minecraft, 262–263
resistance, 300, 306
resizing
columns in LibreOffice Calc, 133
images in GIMP, 142–144
panes in GIMP, 142
program windows, 63–64
sprites in Scratch, 166–167, 175–176
resources, Internet
Adafruit, 15, 325
advanced settings, 454
Akerman, Dave, 9, 442
Bryan, David, 439
Cheat Sheet, 4
Clemens, Michael, 437
compatible devices, 21
Dtronixs, 325
Dummies, 4
eBay, 19
Electric Skateboard project, 439
Element14, 15
Fernandez, David, 439
FocusWriter, 429
GIMP (GNU Image Manipulation Program), 147
HAT boards, 317
#highaltitudechannel, 442
incompatible devices, 21
LibreOffice, 128
Minecraft Wiki, 263
online help, 448
photobooth, 440
Pi Hut, 15
Pibow, 19
Pimoroni, 15
Pope, Daniel (blog), 256
Pygame Zero built-in objects list, 256
Pygame Zero documentation, 256
Raspberry Pi, 25, 156
Raspberry Pi Camera Module, 54–55
RS Components, 15
Scratch, 205
SD cards, 447
SDFormatter, 26
simulator, 307
Tux Paint, 433
UK High Altitude Society, 442
updates, 4
Wardell, Steve, 438
Way Out West Hackathon, 440
restarting, 446
RFID (Radio Frequency IDentification card)
 about, 389
 how it works, 390–401
Old McDonald’s Farm, 410–423
paper dolls, 401–410
RGB LEDs
 about, 357–359
 creating colors, 359–362
ribbon cable, 317
right-clicking folders, 69
RISC OS option (NOOBS Lite), 47
rm command, 107
rmdir command, 110
RoHS (Reduction of Hazardous Substances), 315
root, opening folders as, 73
root directory, 93
Rotate Left button (Image Viewer), 80
Rotate Right button (Image Viewer), 80
rotating photos in GIMP, 145
router, connecting, 45–46
rrand_i() function, 289
RS Components (website), 15
run directory, 93
running
 programs, 63, 213–214, 241–255
 software, 116

S
samples
 defined, 291–292
 using in Sonic Pi, 291–292
Saugen, Lucas (developer), 439–440
Save File As button (Image Viewer), 80
Save File button (Image Viewer), 80
saving
 documents as PDF, 131
 work in LibreOffice, 129
 work in Scratch, 180–181
sbin directory, 93
scissors icon, 184
Scratch. See also arcade game, programming
 about, 163
 adding sounds and music, 176–178
 changing appearance of sprites, 172–176
 creating scripts, 178–179
 drawing sprites in, 186–189
 moving sprites, 167–172
 positioning sprites, 166–167
 resizing sprites, 166–167
 saving work in, 180–181
 screen layout, 165–166
 starting, 165
 tools, 187–188
 using wait block to slow down sprites, 180
website, 205
Scratch 1.4, 328–329
Scratch 2, new features in, 181
Scratch icon, 62
Scratch Programming in Easy Steps
 (McManus), 205
screen, replacing, 447
screen display
 adjusting, 452–454
 troubleshooting, 452–453
screen layout
 Scratch, 165–166
 Sonic Pi, 282–283
screen.draw.text() function, 250
Screenly Open Source Edition (OSE) option
 (NOOBS Lite), 49
scripts
 adding to Stage, 203
 Control block, 190–191
 controlling, 190–195
 creating in Scratch, 178–179
 enabling keyboard control, 192–193
 enabling sprites to control sprites, 193–195
 Forever block, 191–192
 green flag, 190–191
 Scripts Area (Scratch), 165–166
 scrollbar, 75
 SD Association, 26
 SD card writer, 17
 SD cards
 about, 17
 checking, 447
 copying NOOBS to, 30–32
 flashing, 30–32
 formatting, 26–30
 inserting, 37–39
 Linux and, 28–30
 replacing, 447
 SDFormatter software
 for Mac, 27–28
 website, 26
 Search menu (Leafpad Text Editor), 82
 searching, within web pages, 76
 Secure Shell (SSH), 458
 Select tool (Scratch), 188
 selecting
 files/folders, 70, 108–110
 multiple files using wildcards, 108–110
 sending email with Claws Mail, 78
 Sense HAT, 318
 Sense HAT Emulator, 435
 Sense HAT emulator icon, 62
 Sensing block, 193, 197, 203
 sensitivity, adjusting, 83
 series circuit, 304
 settings
 adjusting, 448–454
 advanced, 454
 changing in media center, 157–158
 maze parameters in Minecraft, 265–266
setup
 data partition, 56
 folders, 241
 lists in Minecraft, 269–270
 media center, 149–150
 variables in Minecraft, 269–270
 Shell. See Linux Shell
 shift operator (<<), 366
 Show block (Scratch), 176
 showing
 currency sign in LibreOffice Calc, 133
 sprite information on Stage, 172
 showMaker() function, 270
 shuffle method, 287, 289
 Shutdown icon, 62
 shutting down, 85, 124
 signals, 379–380
 simulators, testing circuits with, 307
 SIZE, 265
 Skywriter HAT, 318–319
 slash (/) operator, 105, 211
 sleep command, 284, 291–292
 smart playlists, 156
 sockets, 41
 software
 installing, 113–118, 115
 managing, 113–118
 recommended, 427–436
 removing, 117
 running, 116
 troubleshooting, 456
 updating, 448
 upgrading on Raspberry Pi, 116–117
 soldering
 about, 299
 General Purpose Input/Output (GPIO) pins, 314–316
 GPIO pins onto Pi Zero, 323–324
 solitaire package name, 115
 Sonic Pi
 about, 281–282
 adding special effects, 292
 changing random number seed, 287–288
composing random tunes using shuffle, 287
live loops, 289–291
playing notes, 283–285
playing random notes, 288–289
screen layout, 282–283
synchronizing with drumbeat, 293
using chord names, 285–286
using list names in programs, 288
using note names, 285–286
using samples, 291–292
writing programs, 286
Sonic Pi icon, 62
Sound Fighter project, 443
sounds
adding in Scratch, 176–178
creating samples, 411–413
space, freeing up, 117
speakers, 19
special effects, adding in Sonic Pi, 292
speech bubbles (Scratch), 173–174
speed, adjusting for game, 204
split() method, 234
Spotify, 440
spreadsheet, 131–134
Sprite List (Scratch), 165–166
sprites
adding to games, 185–186
changing appearance of in Scratch, 172–176
changing visibility of in Scratch, 176
deleting in Scratch, 184–185
detecting when hit, 196–197
drawing in Scratch, 186–189
duplicating, 203
enabling to control sprites, 193–195
moving automatically, 199–200
moving in Scratch, 167–172
naming, 189
positioning in Scratch, 166–167
resizing in Scratch, 166–167, 175–176
slowing down with wait block, 180
square brackets ([]), 105, 245
srv directory, 93
SSH (Secure Shell), 458
Stage (Scratch), 165–166, 172, 203
Stallman, Richard (developer), 24
Stamp tool (Scratch), 188
Start Slideshow button (Image Viewer), 79
starting
desktop environment, 59
File Manager, 65
FocusWriter, 429
GIMP, 140
LibreOffice, 128–129
Mathematica, 429
Minecraft, 258
Penguins Puzzle from shell, 428
projects in Scratch, 184–185
Python, 207–208
Scratch, 165
Tux Paint, 432
state machine, 348
statements, conditional, 235. See also specific statements
stopping
players from changing worlds in Minecraft, 264–265
programs, 64–65
switches, 302–305
switching between tabs, 76
switching off Raspberry Pi, 151
switching on Raspberry Pi, 124
sync command, 293
synchronizing, with drumbeat in Sonic Pi, 293
sys directory, 93, 261
T

tabbed browsing, 76
tablenum variable, 216–218, 218–221
tack switch, 328–329
tags, 390
task bar, 178
Task Manager, 64–65
taskbar, 60
Technical Stuff icon, 4
terminal, opening folders in, 73
Terminal icon, 63
testAllWalls() function, 270, 271
testing
circuits with simulators, 307
Raspberry Pi Camera Module, 54–55
Text tool (Scratch), 188
Thonny Python IDE, 332
thought bubbles (Scratch), 173–174
thumbnail view (File Manager), 72
tilde (~) symbol, 90–91, 94–95
timers, adding, 253
times tables program
about, 212
accepting user input, 216
creating, 212–221
printing words, variables, and numbers, 216–218
using for loops, 218–221
using variables, 214–215
time.sleep() function, 348
Tip icon, 3
TLXOS option (NOOBS Lite), 49
tmp directory, 93
tools (Scratch), 187–188
Tools menu, 73
Torvalds, Linus (developer), 24
troubleshooting Raspberry Pi, 446–448
T-Shirt Cannon project, 439–440
tuple, 244
turning off media center, 158
turning on, 46–50
Tux Paint, 432–433
TV
about, 16
connecting, 41–43
.txt, 104, 110
type command, 120

UK High Altitude Society (website), 442
Undelete option (Scratch), 184
Unique IDentification number (UID), 393–394
Up a Level (File Manager), 69
update() function, 251
updating
cache, 114
Penguins Puzzle, 428
software, 448
website for, 4
upgrading software on Raspberry Pi, 116–117
Upton, Eben (designer), 11
USB device, adding media to media center from, 151–152
USB hub
about, 16–17
connecting, 43–44
USB key, 18
USB keyboard/mouse, 17
USB socket, 43–44
USB Wi-Fi adapter, 18
user accounts, managing, 118–120
user input, accepting, 216
useradd command, 119
users, adding, 119
usr directory, 93

V
value of current, 310
van Loo, Gert (designer), 16
var directory, 93
variables
about, 197–199
cellsVisitedList[], 269
creating, 197
firingflag, 201
global, 252
leapsize, 199–200, 203
local, 252
numberOfCells, 269
numberOfVisitedCells, 269
playerx, 269
playerz, 269
printing, 216–218

Ubuntu, 28–30
UHF (860-960MHz), 390
UID (Unique IDentification number), 393–394
setting up in Minecraft, 269–270

\texttt{tablenum}, 216–218, 218–221

using, 214–215

\texttt{xposition}, 269

\texttt{zposition}, 269

Variables button (Scratch), 201

\texttt{VC1} format, 156

verifying

connections, 446

file types in Linux Shell, 89–90

MicroSD card, 47, 447

SD card, 447

what's installed, 118

versions

Python, 208

Raspberry Pi, 11–14

\texttt{VGA} (video graphics array), 16

video, 153–154, 156–157. \textit{See also} media center

video graphics array (VGA), 16

VideoCore IV graphics processing unit (GPU), 14

View menu (File Manager), 72

viewing photos in media center, 17

visibility, changing of sprites in Scratch, 176

VLC Media Player, 159

voltage, 300

voltage drop, 312

\textbf{W}

waffle box, 360

wait block, slowing down sprites with, 180

wallpaper, 60

wallpaper, changing, 60

Wardell, Steve (developer), 438

Warning! icon, 4

Way Out West Hackathon, 440

Weather Station project, 438

web browsing

about, 74

bookmarks, 76–77

with Chromium, 74–76

privacy, 77–78

searching within web pages, 76

tabbed browsing, 76

web pages, searching within, 76

websites

Adafruit, 15, 325

advanced settings, 454

Akerman, Dave, 9, 442

Bryan, David, 439

Cheat Sheet, 4

Clemens, Michael, 437

compatible devices, 21

Dtronixs, 325

Dummies, 4

eBay, 19

Electric Skateboard project, 439

Element14, 15

Fernandez, David, 439

FocusWriter, 429

GIMP (GNU Image Manipulation Program), 147

HAT boards, 317

#highaltitudechannel, 442

incompatible devices, 21

LibreOffice, 128

Minecraft Wiki, 263

online help, 448

photobooth, 440

Pi Hut, 15

Pibow, 19

Pimoroni, 15

Pope, Daniel (blog), 256

Pygame Zero built-in objects list, 256

Pygame Zero documentation, 256

Raspberry Pi, 25, 156

Raspberry Pi Camera Module, 54–55

RS Components, 15

Scratch, 205

SD cards, 447

SDFormatter, 26

simulator, 307

Tux Paint, 433

UK High Altitude Society, 442

updates, 4

Wardell, Steve, 438

Way Out West Hackathon, 440

Weessa, Jean (developer), 443

which command, 120
while command, 229
while loop, 227–228, 274, 350
Whirl effect (Scratch), 175
Wi-Fi, configuring, 53
Wi-Fi adapter, 18
wildcards, selecting files using, 108–110
windows
 closing, 63–64
 resizing, 63–64
Windows 10 IoT Core option (NOOBS Lite), 49
Windows PC
 copying NOOBS to SD or MicroSD cards, 30
 SDFormatter software, 26–27
Wolfram icon, 63
words, printing, 216–218
workspaces (Sonic Pi), 282–283
write permission, 101
writing
 programs in Python. See Python
 programs in Sonic Pi, 286
WS2350 weather station, 438
WS2812b, 362–365

X
X button, 63
X server, 116
XInvaders 3D, 431
xposition variable, 269
Xtrinsic Sense, 319–320

Z
Zero
 about, 12
 Ethernet socket, 46
 inserting SD cards in, 38–39
 network connections, 45
 soldering GPIO pins onto, 323–324
Zero W
 about, 12, 37
 connecting camera on, 39
 inserting SD cards in, 38–39
Zoom In button (Image Viewer), 79
Zoom Out button (Image Viewer), 79
zposition variable, 269
About the Authors

Sean McManus is an expert technology and business author. His other books include Mission Python, Coder Academy, Cool Scratch Projects in Easy Steps, Scratch Programming in Easy Steps, and Web Design in Easy Steps. His novel for adults, Earworm, goes undercover in the music industry, exposing a conspiracy to replace bands with computer-generated music. His tutorials and articles have appeared in magazines including The MagPi, Internet Magazine, Internet Works, Business 2.0, Making Music, and Personal Computer World. He has been a Code Club volunteer, helping children at a local school to learn computer programming. Visit his website at www.sean.co.uk for bonus content from his books.

Mike Cook has been making electronic things since he was at school. A former lecturer in physics at Manchester Metropolitan University, he wrote more than 300 computing and electronics articles in the pages of computer magazines for 20 years starting in the 1980s. Leaving the University after 21 years when the physics department closed down, he got a series of proper jobs where he designed digital TV set-top boxes and access control systems. His other books include Raspberry Pi Projects, Raspberry Pi Projects for Dummies, and Arduino Music and Audio Projects. He also works with Drake Music Labs North, a charity for disabled musicians, developing accessible music equipment.

Now retired and freelancing, he spends his days surrounded by wires, patrolling the forums as Grumpy Mike.

Dedication

To my wife, Karen, with thanks for all her support throughout this project and always. And to Leo, our wonderful son. —Sean

To my wife, Wendy, who always acts delighted whenever I show her yet another blinking LED. And also to the late Leicester Taylor, World War II radar researcher and inspirational supervisor of my post-graduate research at the University of Salford. —Mike
Author’s Acknowledgments

Thank you to my co-author, Mike, for bringing his electronics expertise and fantastic project ideas. Thank you to Craig Smith for commissioning us to write the first edition of this book; and to Katie Mohr, our acquisitions editor on the second and third editions. Thanks also to Linda Morris for her editing support on the first two editions; and to Paul Levesque, our project editor, and Becky Whitney, our copy editor on this third edition. Our technical editors Jason E Geistweidt (3rd edition), Ryan Walmsley (2nd edition), and Paul Hallett (1st edition) cast a careful eye over the text and code and made much appreciated suggestions. Olivier Engler, who translated the first edition into French, provided helpful feedback too. Thanks also to Lorna Mein and Natasha Lee in marketing, and to the ... For Dummies team for making it all happen.

Many people helped with research or permissions requests, including Karen McManus, Sam Aaron, Eben Upton, Liz Upton, Leo McHugh, Mark Turner, Peter Sayer, John Hartnup, Bill Kendrick, Simon Cox, Jon Williamson, Paul Beech, Peter de Rivaz, Michał Męciński, Ruairí Glynn, Stephen Revill, Lawrence James, Bram Stolk, Adam Kemeny, Will Jessop, and David Bryan. We wouldn't have a book to write if it weren't for the wonderful work of the Raspberry Pi Foundation, the manufacturers who took a gamble on it, and the many thousands of people who have contributed to the Raspberry Pi’s software. —Sean

I would like to thank Sean McManus for inviting me to contribute to this book and the staff at Wiley for making the process of producing this book as painless as possible. —Mike
Publisher’s Acknowledgments

Acquisitions Editor: Katie Mohr
Project Editor: Paul Levesque
Copy Editor: Becky Whitney
Technical Editor: Jason Geistweidt
Editorial Assistant: Owen Kaelble
Senior Editorial Assistant: Cherie Case

Production Editor: Magesh Elangovan
Cover Image: © Courtesy of Raspberry Pi Foundation
Computing is for everyone

Find out more about the Raspberry Pi Foundation, and how you can get involved in our community, at

raspberrypi.org
WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.